In this paper, the process of comparison between the tree regression model and the negative binomial regression. As these models included two types of statistical methods represented by the first type "non parameter statistic" which is the tree regression that aims to divide the data set into subgroups, and the second type is the "parameter statistic" of negative binomial regression, which is usually used when dealing with medical data, especially when dealing with large sample sizes. Comparison of these methods according to the average mean squares error (MSE) and using the simulation of the experiment and taking different sample sizes where the results of simulation showed that the tree regression is best when the value of variance is large (5) and for all sample sizes model negative binomial regression when variance values (0.01, 0.5, 1) for all sample sizes, this method is superior to tree regression only when we take medium sample sizes.
This paper considers and proposes new estimators that depend on the sample and on prior information in the case that they either are equally or are not equally important in the model. The prior information is described as linear stochastic restrictions. We study the properties and the performances of these estimators compared to other common estimators using the mean squared error as a criterion for the goodness of fit. A numerical example and a simulation study are proposed to explain the performance of the estimators.
Most countries in the world particularly developing countries, including Iraq, facing extremely dangerous problem with social and political dimensions, which is the emergence of the food crisis problem ,the decrease in domestic food production in Iraq isn't meet the needs of its population food, due to the fact that the agricultural sector suffers from multiple natural ,economic and human problems .It is still below the level required to meet the needs of the population of food ,since food at the forefront of priorities needed by the human . This represents indispensable basic necessity , so the responsibility of its availability permanently in appropriate&nb
... Show MoreAbstract
The prevention of bankruptcy not only prolongs the economic life of the company and increases its financial performance, but also helps to improve the general economic well-being of the country. Therefore, forecasting the financial shortfall can affect various factors and affect different aspects of the company, including dividends. In this regard, this study examines the prediction of the financial deficit of companies that use the logistic regression method and its impact on the earnings per share of companies listed on the Iraqi Stock Exchange. The time period of the research is from 2015 to 2020, where 33 companies that were accepted in the Iraqi Stock Exchange were selected as a sample, and the res
... Show MoreAbstract
In this study, we compare between the autoregressive approximations (Yule-Walker equations, Least Squares , Least Squares ( forward- backword ) and Burg’s (Geometric and Harmonic ) methods, to determine the optimal approximation to the time series generated from the first - order moving Average non-invertible process, and fractionally - integrated noise process, with several values for d (d=0.15,0.25,0.35,0.45) for different sample sizes (small,median,large)for two processes . We depend on figure of merit function which proposed by author Shibata in 1980, to determine the theoretical optimal order according to min
... Show MoreThe partial level density PLD of pre-equilibrium reactions that are described by Ericson’s formula has been studied using different formulae of single particle level density . The parameter was used from the equidistant spacing model (ESM) model and the non- equidistant spacing model (non-ESM) and another formula of are derived from the relation between and level density parameter . The formulae used to derive are the Roher formula, Egidy formula, Yukawa formula, and Thomas –Fermi formula. The partial level density results that depend on from the Thomas-Fermi formula show a good agreement with the experimental data.
Abstract
The method binery logistic regression and linear discrimint function of the most important statistical methods used in the classification and prediction when the data of the kind of binery (0,1) you can not use the normal regression therefore resort to binary logistic regression and linear discriminant function in the case of two group in the case of a Multicollinearity problem between the data (the data containing high correlation) It became not possible to use binary logistic regression and linear discriminant function, to solve this problem, we resort to Partial least square regression.
In this, search th
... Show MoreCanonical correlation analysis is one of the common methods for analyzing data and know the relationship between two sets of variables under study, as it depends on the process of analyzing the variance matrix or the correlation matrix. Researchers resort to the use of many methods to estimate canonical correlation (CC); some are biased for outliers, and others are resistant to those values; in addition, there are standards that check the efficiency of estimation methods.
In our research, we dealt with robust estimation methods that depend on the correlation matrix in the analysis process to obtain a robust canonical correlation coefficient, which is the method of Biwe
... Show MoreCongenital anomalies commonly occur in humans, possibly visible. If these anomalies appear in visible parts in human body such as face, hands and feet. They may only appear after utilizing a number of special tests in order to show by means of the anomalies that occur in the internal organs of the body such as heart, stomach and kidneys.
Research data have comprised accessible information in the anomalies birth statistics form situated of Health and Life Statistics section at the Ministry of Health and environment, where the number of anomalies births involved in the study (2603 anomalies birth) in Iraq, except Kurdistan region, at 2015. A two way-response logistic regression analysis h
... Show MoreThe current paper proposes a new estimator for the linear regression model parameters under Big Data circumstances. From the diversity of Big Data variables comes many challenges that can be interesting to the researchers who try their best to find new and novel methods to estimate the parameters of linear regression model. Data has been collected by Central Statistical Organization IRAQ, and the child labor in Iraq has been chosen as data. Child labor is the most vital phenomena that both society and education are suffering from and it affects the future of our next generation. Two methods have been selected to estimate the parameter
... Show More