Preferred Language
Articles
/
jeasiq-1896
Comparison Between Tree regression (TR), and Negative binomial regression (NBR) by Using Simulation.
...Show More Authors

            In this paper, the process of comparison between the tree regression model and the negative binomial regression. As these models included two types of statistical methods represented by the first type "non parameter statistic" which is the tree regression that aims to divide the data set into subgroups, and the second type is the "parameter statistic" of negative binomial regression, which is usually used when dealing with medical data, especially when dealing with large sample sizes. Comparison of these methods according to the average mean squares error (MSE) and using the simulation of the experiment and taking different sample sizes where the results of simulation showed that the tree regression is best when the value of variance is large (5) and for all sample sizes model negative binomial regression when variance values (0.01, 0.5, 1) for all sample sizes, this method is superior to tree regression only when we take medium sample sizes.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Application the generalized estimating equation Method (GEE) to estimate of conditional logistic regression model for repeated measurements
...Show More Authors

Conditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Sep 30 2024
Journal Name
Joiv : International Journal On Informatics Visualization
Evaluation of the Performance of Kernel Non-parametric Regression and Ordinary Least Squares Regression
...Show More Authors

Researchers need to understand the differences between parametric and nonparametric regression models and how they work with available information about the relationship between response and explanatory variables and the distribution of random errors. This paper proposes a new nonparametric regression function for the kernel and employs it with the Nadaraya-Watson kernel estimator method and the Gaussian kernel function. The proposed kernel function (AMS) is then compared to the Gaussian kernel and the traditional parametric method, the ordinary least squares method (OLS). The objective of this study is to examine the effectiveness of nonparametric regression and identify the best-performing model when employing the Nadaraya-Watson

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using Genetic Algorithm to Estimate the Parameters of the Gumbel Distribution Function by Simulation
...Show More Authors

In this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as  the Bayes method. The comparison was made using the mean error squares (MSE), where the best  estimator  is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).

View Publication Preview PDF
Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
A Comparison Between Two Shape Parameters Estimators for (Burr-XII) Distribution
...Show More Authors

This paper deals with defining Burr-XII, and how to obtain its p.d.f., and CDF, since this distribution is one of failure distribution which is compound distribution from two failure models which are Gamma model and weibull model. Some equipment may have many important parts and the probability distributions representing which may be of different types, so found that Burr by its different compound formulas is the best model to be studied, and estimated its parameter to compute the mean time to failure rate. Here Burr-XII rather than other models is consider  because it is used to model a wide variety of phenomena including crop prices, household income, option market price distributions, risk and travel time. It has two shape-parame

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Fri Dec 20 2024
Journal Name
Al-rafidain University College For Sciences
“Simple Regression Analysis by using Linear Programming Technique and illustration of Absolute Residuals method with another Estimation Techniques”
...Show More Authors

This research deals with unusual approach for analyzing the Simple Linear Regression via Linear Programming by Two - phase method, which is known in Operations Research: “O.R.”. The estimation here is found by solving optimization problem when adding artificial variables: Ri. Another method to analyze the Simple Linear Regression is introduced in this research, where the conditional Median of (y) was taken under consideration by minimizing the Sum of Absolute Residuals instead of finding the conditional Mean of (y) which depends on minimizing the Sum of Squared Residuals, that is called: “Median Regression”. Also, an Iterative Reweighted Least Squared based on the Absolute Residuals as weights is performed here as another method to

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
SMS Spam Detection Using Multiple Linear Regression and Extreme Learning Machines
...Show More Authors

     With the growth of the use mobile phones, people have become increasingly interested in using Short Message Services (SMS) as the most suitable communications service. The popularity of SMS has also given rise to SMS spam, which refers to any unwanted message sent to a mobile phone as a text. Spam may cause many problems, such as traffic bottlenecks or stealing important users' information. This paper,  presents a new model that extracts seven features from each message before applying a Multiple Linear Regression (MLR) to assign a weight to each of the extracted features. The message features are fed into the Extreme Learning Machine (ELM) to determine whether they are spam or ham. To evaluate the proposed model, the UCI bench

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
Crude Oil Price Forecasts Using Support Vector Regression and Technical Indicators
...Show More Authors

Oil price forecasting has captured the attention of both researchers and academics because of the unique characteristics of crude oil prices and how they have a big impact on a lot of different parts of the economic value of the product. As a result, most academics use a lot of different ways to predict the future. On the other hand, researchers have a hard time because crude oil prices are very unpredictable and can be affected by many different things. This study uses support vector regression (SVR) with technical indicators as a feature to improve the prediction of the monthly West Texas Intermediate (WTI) price of crude oil. The root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) measur

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Estimation of Cutoff Values by Using Regression Lines Method in Mishrif Reservoir/ Missan oil Fields
...Show More Authors

Net pay is one of the most important parameters used in determining initial oil in place of a reservoir. It can be delineated through the using of limiting values of the petrophysical properties of the reservoir. Those limiting values are named as the cutoff. This paper provides an insight into the application of regression line method in estimating porosity, clay volume and water saturation cutoff values in Mishrif reservoir/ Missan oil fields. The study included 29 wells distributed in seven oilfields of Halfaya, Buzurgan, Dujaila, Noor, Fauqi, Amara and Kumait.

This study is carried out by applying two types of linear regressions: Least square and Reduce Major Axis Regression.

The Mishrif formation was

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu Sep 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of BASE methods with other methods for estimating the measurement parameter for WEBB distribution using simulations
...Show More Authors

  Weibull distribution is considered as one of the most widely  distribution applied in real life, Its similar to normal distribution in the way of applications, it's also considered as one of the distributions that can applied in many fields such as industrial engineering to represent replaced and manufacturing time ,weather forecasting, and other scientific uses in reliability studies and survival function in medical and communication engineering fields.

   In this paper, The scale parameter has been estimated for weibull distribution using Bayesian method based on Jeffery prior information as a first method , then enhanced by improving Jeffery prior information and then used as a se

... Show More
View Publication Preview PDF
Crossref