In this paper, the process of comparison between the tree regression model and the negative binomial regression. As these models included two types of statistical methods represented by the first type "non parameter statistic" which is the tree regression that aims to divide the data set into subgroups, and the second type is the "parameter statistic" of negative binomial regression, which is usually used when dealing with medical data, especially when dealing with large sample sizes. Comparison of these methods according to the average mean squares error (MSE) and using the simulation of the experiment and taking different sample sizes where the results of simulation showed that the tree regression is best when the value of variance is large (5) and for all sample sizes model negative binomial regression when variance values (0.01, 0.5, 1) for all sample sizes, this method is superior to tree regression only when we take medium sample sizes.
Segmented regression consists of several sections separated by different points of membership, showing the heterogeneity arising from the process of separating the segments within the research sample. This research is concerned with estimating the location of the change point between segments and estimating model parameters, and proposing a robust estimation method and compare it with some other methods that used in the segmented regression. One of the traditional methods (Muggeo method) has been used to find the maximum likelihood estimator in an iterative approach for the model and the change point as well. Moreover, a robust estimation method (IRW method) has used which depends on the use of the robust M-estimator technique in
... Show MoreIn this paper, we investigate the connection between the hierarchical models and the power prior distribution in quantile regression (QReg). Under specific quantile, we develop an expression for the power parameter ( ) to calibrate the power prior distribution for quantile regression to a corresponding hierarchical model. In addition, we estimate the relation between the and the quantile level via hierarchical model. Our proposed methodology is illustrated with real data example.
Researchers used different methods such as image processing and machine learning techniques in addition to medical instruments such as Placido disc, Keratoscopy, Pentacam;to help diagnosing variety of diseases that affect the eye. Our paper aims to detect one of these diseases that affect the cornea, which is Keratoconus. This is done by using image processing techniques and pattern classification methods. Pentacam is the device that is used to detect the cornea’s health; it provides four maps that can distinguish the changes on the surface of the cornea which can be used for Keratoconus detection. In this study, sixteen features were extracted from the four refractive maps along with five readings from the Pentacam software. The
... Show MoreThis study is concerned with the comparison of the results of some tests of passing and dribbling of the basketball of tow different years between teams of chosen young players in Baghdad. Calculative methods were used namely (Arithmetic mean, Value digression and T.test for incompatible specimens). After careful calculative treatments, it has been that there were abstract or no abstract differences in the find results of chestpass, highdribble and cross-over dribble. The clubs were: (Al-Khark, Air defence, Police and Al-Adamiyah) each one separate from the other for the year (2000-2001). After all that many findings were reached such as the lack of objective valuation (periodical tests) between one sport season and the other. In the light
... Show MoreThis research is concerned with the re-analysis of optical data (the imaginary part of the dielectric function as a function of photon energy E) of a-Si:H films prepared by Jackson et al. and Ferlauto et al. through using nonlinear regression fitting we estimated the optical energy gap and the deviation from the Tauc model by considering the parameter of energy photon-dependence of the momentum matrix element of the p as a free parameter by assuming that density of states distribution to be a square root function. It is observed for films prepared by Jackson et al. that the value of the parameter p for the photon energy range is is close to the value assumed by the Cody model and the optical gap energy is which is also close to the value
... Show MoreThe study aimed to evaluate injuries and economic losses which caused by rose beetle Maladerainsanabilis (Brenske) on ornamental and fruit plants as introduced insect in Iraq during 2015 and determine infested host plants in addition to evaluate efficacy of pathogenic fungi Metarhiziumanisopiliae (1x10⁹ spore/ ml) and Beauvariabassiana (1x10⁸spore/ ml) in mortality of insect larvae in laboratory and field.The results showed that the insect was polyphagous infested many host plants (20 host plant)Which caused degradation and dead the plants through adult feeding on leaves and flower but large injury caused by larvae feeding on root plants which caused obligate dead to infested plant, the percentage mortality of rose plants 68.6%, pear
... Show MoreBoth of the species Typha domengensis and Phragmites communis among the most important plant endemic in flora of Iraq from monocotyledon. Due to the similarity of the two species with each other in many morphological characteristics such as the environment where they live and the form of leaves and type of leaf venation and type of stomata….ets, also both of species belong to monocots plant therefore this research work was conducted find anatomical differences that have the same as taxonomic value to help distinguishing between both species under study. Through this research, we found great importance to the anatomical characteristics which we reached by studying the roots, stems and leaves sections f
... Show MoreIn this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce
Paper Type: Review article.
another suggestion based on artificial neural networks.
Semiparametric methods combined parametric methods and nonparametric methods ,it is important in most of studies which take in it's nature more progress in the procedure of accurate statistical analysis which aim getting estimators efficient, the partial linear regression model is considered the most popular type of semiparametric models, which consisted of parametric component and nonparametric component in order to estimate the parametric component that have certain properties depend on the assumptions concerning the parametric component, where the absence of assumptions, parametric component will have several problems for example multicollinearity means (explanatory variables are interrelated to each other) , To treat this problem we use
... Show More