In this paper, the process of comparison between the tree regression model and the negative binomial regression. As these models included two types of statistical methods represented by the first type "non parameter statistic" which is the tree regression that aims to divide the data set into subgroups, and the second type is the "parameter statistic" of negative binomial regression, which is usually used when dealing with medical data, especially when dealing with large sample sizes. Comparison of these methods according to the average mean squares error (MSE) and using the simulation of the experiment and taking different sample sizes where the results of simulation showed that the tree regression is best when the value of variance is large (5) and for all sample sizes model negative binomial regression when variance values (0.01, 0.5, 1) for all sample sizes, this method is superior to tree regression only when we take medium sample sizes.
In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending
Abstract
This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model
... Show MoreThe issue of liquidity, profitability, and money employment, and capital fullness is one of the most important issues that gained high consideration by other authors and researchers in their attempts to find out the real relationship and how can balance be achieved, which is the main goal of each deposits.
For the sake of comprising the study variables, the research has formed the problem of the study which refers to the bank capability to enlarge profits without dissipation in liquidity of the bank which will negatively reflect on the bank's fame as well as the customers' trust. For all these matters, the researcher has proposed a set of aims, the important of which is the estimation of the bank profitability; liquid
... Show More
Abstract:
The models of time series often suffer from the problem of the existence of outliers that accompany the data collection process for many reasons, their existence may have a significant impact on the estimation of the parameters of the studied model. Access to highly efficient estimators is one of the most important stages of statistical analysis, And it is therefore important to choose the appropriate methods to obtain good estimators. The aim of this research is to compare the ordinary estimators and the robust estimators of the estimation of the parameters of
... Show MoreLinear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.
In this paper we have been focus for the comparison between three forms for classification data belongs
... Show MoreAbstract
The logistic regression model is one of the nonlinear models that aims at obtaining highly efficient capabilities, It also the researcher an idea of the effect of the explanatory variable on the binary response variable. &nb
... Show MoreIn this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in
The two most popular models inwell-known count regression models are Poisson and negative binomial regression models. Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. Negative binomial regression is similar to regular multiple regression except that the dependent (Y) variables an observed count that follows the negative binomial distribution. This research studies some factors affecting divorce using Poisson and negative binomial regression models. The factors are unemplo
... Show MoreArtificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.
The purpose behind building the linear regression model is to describe the real linear relation between any explanatory variable in the model and the dependent one, on the basis of the fact that the dependent variable is a linear function of the explanatory variables and one can use it for prediction and control. This purpose does not cometrue without getting significant, stable and reasonable estimatros for the parameters of the model, specifically regression-coefficients. The researcher found that "RUF" the criterian that he had suggested accurate and sufficient to accomplish that purpose when multicollinearity exists provided that the adequate model that satisfies the standard assumpitions of the error-term can be assigned. It
... Show More