The problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.
The research aims to determine optimal urban planning and design indicators of the urban clusters form in hot arid zones through studying of three urban areas in Baghdad, analyzing their urban indicators which include floor area ratio (FAR), urban clusters height, building density or land coverage, green areas, paved areas, shading ratio and how they affect urban temperature. The research reached the conclusion that air outdoor temperature on urban areas affected primarily by shadows casted on the ground, the effect of shaded area equals (5) times the effect of paved areas and (3.7) times the effect of green areas, this means that increasing urban clusters height in hot arid zones could minimize air outdoor temperature, building
... Show MoreThe blade pitch angle (BPA) in wind turbine (WT) is controlled to maximize output power generation above the rated wind speed (WS). In this paper, four types of controllers are suggested and compared for BPA controller in WT: PID controller (PIDC), type-1 fuzzy logic controller (T1-FLC), type-2 fuzzy logic controller (T2-FLC), and hybrid fuzzy-PID controller (FPIDC). The Mamdani and Sugeno fuzzy inference systems (FIS) have been compared to find the best inference system used in FLC. Genetic algorithm (GA) and Particle swarm optimization algorithm (PSO) are used to find the optimal tuning of the PID parameter. The results of500-kw horizontal-axis wind turbine show that PIDC based on PSO can reduced 2.81% in summation error of power
... Show MoreThe Battle of Kadesh is replete with many military arrangements that reflect the tremendous development of war preparations in the thirteenth century BC; where the expressive pictures the Egyptians left on some of the walls of their temples show the tremendous ability to organize and divide the forces and the great development that affected the war machine. Furthermore, the text accompanied these pictures reveal some news about that battle, which is considered one of the most important wars in the ancient world. Thus, the importance of the study lies in the fact that it examines one of the most important battles of the ancient Near East, the results of which had great repercussions on the region. This is because it is the most abundant B
... Show MoreThe sports institutions in general are affected and contact with sport in particular the environmental factor, whether political or economic, which makes them in constant need to consider their administrative applications to increase the confidence of their employees because of their suitability or consistency with the new reality according to the sports activities that relate to it, The stalemate in administrative and technical aspects of the administrative work method in the majority of the Olympic sports federations makes the achievement of most of the goals far from the present reality, and the selection of suitable alternatives to achieve the objectives by those who disagree with the concepts of modern dictatorial standards It leads to
... Show MoreThe investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti
... Show MoreDetecting protein complexes in protein-protein interaction (PPI) networks is a challenging problem in computational biology. To uncover a PPI network into a complex structure, different meta-heuristic algorithms have been proposed in the literature. Unfortunately, many of such methods, including evolutionary algorithms (EAs), are based solely on the topological information of the network rather than on biological information. Despite the effectiveness of EAs over heuristic methods, more inherent biological properties of proteins are rarely investigated and exploited in these approaches. In this paper, we proposed an EA with a new mutation operator for complex detection problems. The proposed mutation operator is formulate
... Show MoreThis research discussed and analyzed the formulation of a strategy to manage tax compliance risks, as an applied research in the General commission for Taxes. The questionnaire was used as a research tool to identify the factors that stimulate or retard the research sample from being compliant. The K-means clustering method was also used to enable the classification of the research sample's views into four behaviors, some of these views pose tax-compliance risks. The research concluded that risk management is a continuous process and that all departments of the General commission for Taxes are responsible for its implementation to enable them to deal with the behavior of the taxpayer towards tax compliance. And it recommended
... Show More