Preferred Language
Articles
/
jeasiq-1824
Applying some hybrid models for modeling bivariate time series assuming different distributions for random error with a practical application
...Show More Authors

Abstract

  Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous variables (GARCHX) are applied to analyze and capture the volatility that occurs in the conditional variance of a linear model. Since time series observations rarely have linear or nonlinear components in nature or usually included together. Therefore, the main purpose of this paper is to employ the hybrid model technique according to Zhang methodology for hybrid models to combine the linear forecasts of the best linear model of ARMAX models and the nonlinear forecasts of the best nonlinear models of (ARCH, GARCH & GARCHX) models and thus increase the efficiency and accuracy of performance forecasting future values of the time series.

This paper is concerned with the modeling and building of the hybrid models (ARMAX-GARCH) and (ARMAX-GARCHX), assuming three different random error distributions: Gaussian distribution, Student-t distribution, as well as the general error distribution and the last two distributions were applied for the purpose of capturing the characteristics of heavy tail distributions which have a Leptokurtic characteristic compared to the normal distribution. This research adopted a modern methodology in estimating the parameters of the hybrid model namely the (two-step procedure) methodology. In the first stage, the parameters of the linear model were estimated using three different methods: The Ordinary Least Squares method (OLS), the Recursive Least Square Method with Exponential Forgetting Factor (RLS-EF), and the Recursive Prediction Error Method (RPM). In the second stage, the parameters of the nonlinear model were estimated using the MLE method and employing the numerical improvement algorithm (BHHH algorithm).

 

 

 

The hybrid models have been applied for modeling the relationship between the exogenous time series represented by the exchange rate and the endogenous time series represented by the unemployment rate in the USA for the period from (January 2000 to December 2017 i.e. 216 observations), and also the out-of-sample forecasts of unemployment rate in the last twelve values of (2018). The forecasting performance of the hybrid models and the competing individual model was also evaluated using the loss function accuracy measures (MAPE), (MAE), and the robust (Q-LIKE). Based on statistical measurements, the results showed the hybrid models improved the accuracy and efficiency of the single model. () hybrid model error whose conditional variance follows a GED distribution is the optimal model in modeling the bivariate time series data under study and more efficient in the forecasting process compared with the individual model and the hybrid model. This is due to having the lowest values for accuracy measures. Different software packages (MATLAB (2018a), SAS 9.1, R 3.5.2 and EViews 9) were used to analyze the data under consideration.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between Maximum Likelihood and Bayesian Methods For Estimating The Gamma Regression With Practical Application
...Show More Authors

In this paper, we will illustrate a gamma regression model assuming that the dependent variable (Y) is a gamma distribution and that it's mean ( ) is related through a linear predictor with link function which is identity link function g(μ) = μ. It also contains the shape parameter which is not constant and depends on the linear predictor and with link function which is the log link and we will estimate the parameters of gamma regression by using two estimation methods which are The Maximum Likelihood and the Bayesian and a comparison between these methods by using the standard comparison of average squares of error (MSE), where the two methods were applied to real da

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Compared Some Estimators Ordinary Ridge Regression And Bayesian Ridge Regression With Practical Application
...Show More Authors

Maulticollinearity is a problem that always occurs when two or more predictor variables are correlated with each other. consist of the breach of one basic assumptions of the ordinary least squares method with biased estimates results, There are several methods which are proposed to handle this problem including the  method To address a problem  and  method To address a problem , In this research a comparisons are employed between the biased   method and unbiased   method with Bayesian   using Gamma distribution  method  addition to Ordinary Least Square metho

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some methods for estimating the parameters of the binary logistic regression model using the genetic algorithm with practical application
...Show More Authors

Abstract

   Suffering the human because of pressure normal life of exposure to several types of heart disease as a result of due to different factors. Therefore, and in order to find out the case of a death whether or not, are to be modeled using binary logistic regression model

    In this research used, one of the most important models of nonlinear regression models extensive use in the modeling of applications statistical, in terms of heart disease which is the binary logistic regression model. and then estimating the parameters of this model using the statistical estimation methods, another problem will be appears in estimating its parameters, as well as when the numbe

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Some Estimation Methods Of GM(1,1) Model With Missing Data and Practical Application
...Show More Authors

This paper presents a grey model GM(1,1) of the first rank and a variable one and is the basis of the grey system theory , This research dealt  properties of grey model and a set of methods to estimate parameters of the grey model GM(1,1)  is the least square Method (LS) , weighted least square method (WLS), total least square method (TLS) and gradient descent method  (DS). These methods were compared based on two types of standards: Mean square error (MSE), mean absolute percentage error (MAPE), and after comparison using simulation the best method was applied to real data represented by the rate of consumption of the two types of oils a Heavy fuel (HFO) and diesel fuel (D.O) and has been applied several tests to

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
The Use Of the Bayesian Method and Restricted Maximum Likelihood in estimating of mixed Linear Components with random effects model with practical application.
...Show More Authors

In this research we study a variance component model, Which is the one of the most important models widely used in the analysis of the data, this model is one type of a multilevel models, and it is considered as linear models , there are three types of linear variance component models ,Fixed effect of linear variance component model, Random effect of linear variance component model and Mixed effect of linear variance component model . In this paper we will examine the model of mixed effect of linear variance component model with one –way random effect ,and the mixed model is a mixture of fixed effect and random effect in the same model, where it contains the parameter (μ) and treatment effect (τi ) which  has

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Int. J. Agricult.
FORECASTING THE EXCHANGE RATES OF THE US DOLLAR AGAINST THE IRAQI DINAR USING THE BOX-JENKINS METHODOLOGY IN TIME SERIES WITH PRACTICAL APPLICATION
...Show More Authors

The goal of the study is to discover the best model for forecasting the exchange rate of the US dollar against the Iraqi dinar by analyzing time series using the Box Jenkis approach, which is one of the most significant subjects in the statistical sciences employed in the analysis. The exchange rate of the dollar is considered one of the most important determinants of the relative level of the health of the country's economy. It is considered the most watched, analyzed and manipulated measure by the government. There are factors affecting in determining the exchange rate, the most important of which are the amount of money, interest rate and local inflation global balance of payments. The data for the research that represents the exchange r

... Show More
Scopus
Publication Date
Thu Aug 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Aggregate production planning using linear programming with practical application
...Show More Authors

Abstract :

The study aims at building a mathematical model for the aggregate production planning for Baghdad soft drinks company. The study is based on a set of aggregate planning strategies (Control of working hours, storage level control strategy) for the purpose of exploiting the resources and productive capacities available in an optimal manner and minimizing production costs by using (Matlab) program. The most important finding of the research is the importance of exploiting during the available time of production capacity. In the months when the demand is less than the production capacity available for investment. In the subsequent months when the demand exceeds the available energy and to minimize the use of overti

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Multi-objectives probabilistic Aggregate production planning with practical application
...Show More Authors

In this research, has been to building a multi objective Stochastic Aggregate Production Planning model for General al Mansour company Data with Stochastic  demand under changing of market and uncertainty environment in aim to draw strong production plans.  The analysis to derive insights on management issues regular and extra labour costs and the costs of maintaining inventories and good policy choice under the influence medium and optimistic adoption of the model of random has adoption form and had adopted two objective functions total cost function (the core) and income and function for a random template priority compared with fixed forms with objective function and the results showed that the model of two phases wit

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Constructing fuzzy linear programming model with practical application
...Show More Authors

This paper deals with constructing a model of fuzzy linear programming with application on fuels product of Dura- refinery , which consist of seven products that have direct effect ondaily consumption . After Building the model which consist of objective function represents the selling prices ofthe products and fuzzy productions constraints and fuzzy demand constraints addition to production requirements constraints , we used program of ( WIN QSB )  to find the optimal solution

View Publication Preview PDF
Crossref