Preferred Language
Articles
/
jeasiq-1824
Applying some hybrid models for modeling bivariate time series assuming different distributions for random error with a practical application
...Show More Authors

Abstract

  Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous variables (GARCHX) are applied to analyze and capture the volatility that occurs in the conditional variance of a linear model. Since time series observations rarely have linear or nonlinear components in nature or usually included together. Therefore, the main purpose of this paper is to employ the hybrid model technique according to Zhang methodology for hybrid models to combine the linear forecasts of the best linear model of ARMAX models and the nonlinear forecasts of the best nonlinear models of (ARCH, GARCH & GARCHX) models and thus increase the efficiency and accuracy of performance forecasting future values of the time series.

This paper is concerned with the modeling and building of the hybrid models (ARMAX-GARCH) and (ARMAX-GARCHX), assuming three different random error distributions: Gaussian distribution, Student-t distribution, as well as the general error distribution and the last two distributions were applied for the purpose of capturing the characteristics of heavy tail distributions which have a Leptokurtic characteristic compared to the normal distribution. This research adopted a modern methodology in estimating the parameters of the hybrid model namely the (two-step procedure) methodology. In the first stage, the parameters of the linear model were estimated using three different methods: The Ordinary Least Squares method (OLS), the Recursive Least Square Method with Exponential Forgetting Factor (RLS-EF), and the Recursive Prediction Error Method (RPM). In the second stage, the parameters of the nonlinear model were estimated using the MLE method and employing the numerical improvement algorithm (BHHH algorithm).

 

 

 

The hybrid models have been applied for modeling the relationship between the exogenous time series represented by the exchange rate and the endogenous time series represented by the unemployment rate in the USA for the period from (January 2000 to December 2017 i.e. 216 observations), and also the out-of-sample forecasts of unemployment rate in the last twelve values of (2018). The forecasting performance of the hybrid models and the competing individual model was also evaluated using the loss function accuracy measures (MAPE), (MAE), and the robust (Q-LIKE). Based on statistical measurements, the results showed the hybrid models improved the accuracy and efficiency of the single model. () hybrid model error whose conditional variance follows a GED distribution is the optimal model in modeling the bivariate time series data under study and more efficient in the forecasting process compared with the individual model and the hybrid model. This is due to having the lowest values for accuracy measures. Different software packages (MATLAB (2018a), SAS 9.1, R 3.5.2 and EViews 9) were used to analyze the data under consideration.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Molecular Structure
A new thiazoldinone and triazole derivatives: Synthesis, characterization and liquid crystalline properties
...Show More Authors

View Publication
Scopus (15)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Thu Oct 26 2023
Journal Name
Farmacia
THE DEVELOPMENT OF A BRAIN TARGETED MUCOADHESIVE AMISULPRIDE LOADED NANOSTRUCTURED LIPID CARRIER
...Show More Authors

View Publication
Scopus (11)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Removal of Water Turbidity by using Aluminum Filings as a Filter Media
...Show More Authors

The ability of using aluminum filings which is locally solid waste was tested as a mono media in gravity rapid filter. The present study was conducted to evaluate the effect of variation of influent water turbidity (10, 20and 30 NTU); flow rate(30, 40, and 60 l/hr) and bed height (30and60)cm on the performance of aluminum filings filter media for 5 hours run time and compare it with the conventional sand filter. The results indicated that aluminum filings filter showed better performance than sand filter in the removal of turbidity and in the reduction of head loss. Results showed that the statistical model developed by the multiple linear regression was proved to be
valid, and it could be used to predict head loss in aluminum filings

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Aug 07 2018
Journal Name
Oral And Maxillofacial Surgery
Mandibular war injuries caused by bullets and shell fragments: a comparative study
...Show More Authors

View Publication
Scopus (5)
Crossref (8)
Scopus Crossref
Publication Date
Wed Mar 04 2015
Journal Name
Environmental Earth Sciences
Isotopic study of water resources in a semi-arid region, western Iraq
...Show More Authors

View Publication
Scopus (37)
Crossref (24)
Scopus Clarivate Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (29)
Crossref (22)
Scopus Crossref
Publication Date
Mon Mar 18 2024
Journal Name
Inflammopharmacology
The effects of cholesterol and statins on Parkinson’s neuropathology: a narrative review
...Show More Authors

View Publication
Scopus (11)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Tue Jun 14 2016
Journal Name
Applied Organometallic Chemistry
Synthesis and antioxidant activities of Schiff bases and their complexes: a review
...Show More Authors

Schiff bases, named after Hugo Schiff, are aldehyde- or ketone-like compounds in which the carbonyl group is replaced by imine or azomethine group. They are widely used for industrial purposes and also have a broad range of applications as antioxidants. An overview of antioxidant applications of Schiff bases and their complexes is discussed in this review. A brief history of the synthesis and reactivity of Schiff bases and their complexes is presented. Factors of antioxidants are illustrated and discussed. Copyright © 2016 John Wiley & Sons, Ltd.

View Publication Preview PDF
Scopus (223)
Crossref (212)
Scopus Clarivate Crossref
Publication Date
Thu Aug 01 2024
Journal Name
Journal Of Engineering Research
Design, analysis and development of a proton exchange membrane in fuel cell
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Development a Proposed System of Organization Structure to Management Multi Construction Projects
...Show More Authors

The purpose of this study is aimed to lay down an arranged platform suited to Iraqi constructional associations which in charge to carry out multi constructional projects, as it fulfilled management requirements and supervising, so that low - cost projects will be controlled in due term and quality. Based on primary info and observed data collected, the study thesis has been formulated in this way: Iraqi constructional sector bodies which are in charge to implement simultaneously multi constructional projects in need to reformulate its organized structure so that it will be more fitted to management and control of these projects. This thesis includes a
theoretical part contained presenting the most important resources locally and int

... Show More
View Publication Preview PDF
Crossref