The survival analysis is one of the modern methods of analysis that is based on the fact that the dependent variable represents time until the event concerned in the study. There are many survival models that deal with the impact of explanatory factors on the likelihood of survival, including the models proposed by the world, David Cox, one of the most important and common models of survival, where it consists of two functions, one of which is a parametric function that does not depend on the survival time and the other a nonparametric function that depends on times of survival, which the Cox model is defined as a semi parametric model, The set of parametric models that depend on the time-to-event distribution parameters such as Exponential Model, Weibull Model, Log-logistic Model. Our research aims to adopt some of the Bayesian Optimal Criteria in achieving optimal design to estimate the optimal survival time for patients with myocardial infarction by constructing a parametric survival model based on the probability distribution of the survival times of myocardial infarction patients, which is among the most serious diseases that threaten human life and the main cause of death all over the world, as the duration of survival of patients with myocardial infarction varies with the factor or factors causing the injury, there are many factors that lead to the disease such as diabetes, high blood pressure, high cholesterol, psychological pressure and obesity. Therefore, the need to estimate the optimal survival time was expressed by constructing a model of the relationship between the factors leading to the disease and the patient survival time, and we found that the optimal rate of survival time is 18 days.
Background: Cardiovascular disease (CVD) is the number one cause of death worldwide. Objective: To determine of coronary care unit nurses' knowledge regarding patient rehabilitation after myocardial infarction. Methodology: A cross- sectional study was designed in the Cardiac Care Unit of Al-Diwaniyah Teaching Hospital and the Specialized Center for Cardiac Surgery and Catheterization for the period from (November 7, 2022) to (May 12, 2023). A non-probability (purposive) sample consisting of (75 nurses) working in the above-mentioned study site. To determination of coronary care unit Nurses' knowledge regarding patient rehabilitation after myocardial infarction, the researcher used a tool that consists of two parts: The first part:
... Show MoreThe time series of statistical methods mission followed in this area analysis method, Figuring certain displayed on a certain period of time and analysis we can identify the pattern and the factors affecting them and use them to predict the future of the phenomenon of values, which helps to develop a way of predicting the development of the economic development of sound
The research aims to select the best model to predict the number of infections with hepatitis Alvairose models using Box - Jenkins non-seasonal forecasting in the future.
Data were collected from the Ministry of Health / Department of Health Statistics for the period (from January 2009 until December 2013) was used
... Show More
The logistic regression model of the most important regression models a non-linear which aim getting estimators have a high of efficiency, taking character more advanced in the process of statistical analysis for being a models appropriate form of Binary Data.
Among the problems that appear as a result of the use of some statistical methods I
... Show More
Abstract:
We can notice cluster data in social, health and behavioral sciences, so this type of data have a link between its observations and we can express these clusters through the relationship between measurements on units within the same group.
In this research, I estimate the reliability function of cluster function by using the seemingly unrelate
... Show MoreConditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.
This study aimed to determine the possibility of culturing genus Artemia in under laboratory conditions for locally culturing and producing. Different salinity concentrations were used, ranging from 5-40g/l . the results showed that the concentration 30g/l is the best for hatching. This concentration recorded hatching efficiency of 68800 nauplii/g cysts and hatching percentage of 45.86%, while the concentration 5g/l recorded less hatching efficiency and hatching percentage of 20266 nauplii/g and 13.5% respectively . Investigating the effect of salinity on individuals survival and growth using saline concentrations ranging from 30to 100g/l, revealed that the best percentage was 75.00% in the first week with 70g/l, whilst the best rates of
... Show MoreA new approach for baud time (or baud rate) estimation of a random binary signal is presented. This approach utilizes the spectrum of the signal after nonlinear processing in a way that the estimation error can be reduced by simply increasing the number of the processed samples instead of increasing the sampling rate. The spectrum of the new signal is shown to give an accurate estimate about the baud time when there is no apriory information or any restricting preassumptions. The performance of the estimator for random binary square waves perturbed by white Gaussian noise and ISI is evaluated and compared with that of the conventional estimator of the zero crossing detector.