Abstract:
This research emerged due to the needs of Iraqi social sector for diagnosing the problems ,finding the appropriate solutions,and exploiting the social opportunities to solve these problems .The research problem focused on raising the following question: "Were Iraqi Managers in the Ministry of Labor and Social Affairs able to use their qualifications as social entrepreneurs in the ministry to improve the quality of life of the disadvantaged groups?", In light of that, the importance and objectives of the study were determined, and this research derives its importance from trying to address social problems by measuring the degree of meeting the subjective and objective needs of the customer to improve living, The research aims to achieve a number of objectives including access, Including the access to results that underpin the frame of research variables (social entrepreneurship, the quality of life of the customer) and formulating the hypotheses of correlation and influences of research variables. It is conducted a field study on ten social programs implemented in a number of departments of the Iraqi Ministry of Labor and Social Affairs in Baghdad governorate (Security of private sector employees, Social welfare, registration and employment of the unemployed, a national program for the control of occupational diseases, training of the unemployed, economic and social empowerment of women, support for small income-generating projects-loans, social housing for the elderly, full-time appointment, and Exemptions for people with disabilities and special needs), The community of research consists of the managers of these ten programs in the ministry. It chooses a random sample consists of (200) managers of these programs. This research is based on two approaches– descriptive approach in the theoretical side and the field study in the practical side for analyzing the questionnaire. the reality of the variables of the research were addressed and analyzed for the selected sample. Then, the hypotheses of correlation were tested by using correlation coefficient (Pearson). The hypotheses of influence were tested by using the approach of Structural Equation Modeling (SEM). A number of software such as Excel. V.2010, SPSS.V.24, and AMOS.V.24. were used for quantitatively analyzing data and finding the results. The results showed the validity of correlation and the influences hypotheses for the variables. The main recommendations focused on recruitment of individuals with experience and qualifications in the social entrepreneurship field consistent with Iraqi environment in order to improve the quality of life for customers (beneficiaries from the services of ministry).
Seawater might serve as a fresh‐water supply for future generations to help meet the growing need for clean drinking water. Desalination and waste management using newer and more energy intensive processes are not viable options in the long term. Thus, an integrated and sustainable strategy is required to accomplish cost‐effective desalination via wastewater treatment. A microbial desalination cell (MDC) is a new technology that can treat wastewater, desalinate saltwater, and produce green energy simultaneously. Bio‐electrochemical oxidation of wastewater organics creates power using this method. Desalination and the creation of value‐added by‐products are expected because of this ionic mov
Heat island is known as the increases in air temperature through large and industrial cities compared to surrounding rural areas. In this study, remote sensing technology is used to monitor and track thermal variations within the city center of Baghdad through Landsat satellite images and for the period from 2000 to 2015. Several processors and treatments were applied on these images using GIS 10.6 and ERDAS 2014, such as image correction and extraction, supervised classification, and selection of training samples. Urban areas detection was resulted from the supervised classification linked to the temperature readings of the surface taken from the thermal bands of satellite images. The results showed that the surface temperature of the c
... Show MoreIn this paper, two of the local search algorithms are used (genetic algorithm and particle swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize a multi-objective function which is denoted as (total completion time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method is used for comparing the results for (n) jobs starting from (5-18). The results show that the two algorithms have found the optimal and near optimal solutions in an appropriate times.
There is an evidence that channel estimation in communication systems plays a crucial issue in recovering the transmitted data. In recent years, there has been an increasing interest to solve problems due to channel estimation and equalization especially when the channel impulse response is fast time varying Rician fading distribution that means channel impulse response change rapidly. Therefore, there must be an optimal channel estimation and equalization to recover transmitted data. However. this paper attempt to compare epsilon normalized least mean square (ε-NLMS) and recursive least squares (RLS) algorithms by computing their performance ability to track multiple fast time varying Rician fading channel with different values of Doppler
... Show MoreImmune-mediated hepatitis is a severe impendence to human health, and no effective treatment is currently available. Therefore, new, safe, low-cost therapies are desperately required. Berbamine (BE), a natural substance obtained primarily from
This c
Tanuma and Zubair formations are known as the most problematic intervals in Zubair Oilfield, and they cause wellbore instability due to possible shale-fluid interaction. It causes a vast loss of time dealing with various downhole problems (e.g., stuck pipe) which leads to an increase in overall well cost for the consequences (e.g., fishing and sidetrack). This paper aims to test shale samples with various laboratory tests for shale evaluation and drilling muds development. Shale's physical properties are described by using a stereomicroscope and the structures are observed with Scanning Electron Microscope. The shale reactivity and behavior are analyzed by using the cation exchange capacity testing and the capillary suction test is
... Show MoreThe evolution of the Internet of things (IoT) led to connect billions of heterogeneous physical devices together to improve the quality of human life by collecting data from their environment. However, there is a need to store huge data in big storage and high computational capabilities. Cloud computing can be used to store big data. The data of IoT devices is transferred using two types of protocols: Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP). This paper aims to make a high performance and more reliable system through efficient use of resources. Thus, load balancing in cloud computing is used to dynamically distribute the workload across nodes to avoid overloading any individual r
... Show MoreHTH Ahmed Dheyaa Al-Obaidi,", Ali Tarik Abdulwahid', Mustafa Najah Al-Obaidi", Abeer Mundher Ali', eNeurologicalSci, 2023
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show More