Preferred Language
Articles
/
jeasiq-134
Bayes Estimators for the Parameter of the Inverted Exponential Distribution Under different Double informative priors
...Show More Authors

In this paper, we present a comparison of double informative priors which are assumed for the parameter of inverted exponential distribution.To estimate the parameter of inverted exponential distribution by using Bayes estimation ,will be  used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of inverted exponential distribution. Also assumed Chi-squared - Gamma distribution, Chi-squared - Erlang distribution, and- Gamma- Erlang distribution as double priors. The results are the derivations of these estimators under the squared error loss function with three different double priors.

Additionally Maximum likelihood estimation method (MLE) was used  to estimate the parameter of inverted exponential distribution .We used simulation technique, to compare the performance for each estimator, several cases from inverted exponential distribution for data generating, for different samples sizes (small, medium, and large).Simulation results shown that the best method is the bayes  estimation according to the smallest values of mean square errors( MSE) for all samples sizes (n) comparative to the estimated values by using MLE . According to obtained results, we see that when the double prior distribution for  is Gamma- Erlang distribution for some values for the parameters a, b & given the best results according to the smallest values of mean square errors (MSE) comparative to the same values which obtained by using Maximum likelihood estimation (MLE) for the assuming true values for and for all samples sizes.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Double-Exponential-X Family of Distributions: Properties and Applications
...Show More Authors

A new family of distribution named Double-Exponential-X family is proposed. The proposed family is generated from the double exponential distribution. The forms of the probability densities and hazard functions of two distinct subfamilies of the proposed family are examined and reported. Generalproperties such as moment, survival, order statistics, probability weighted moments and quartile functions of the models are investigated. A sub family of the developed family of double –Exponential-X family of the distribution known as double-Exponential-Pareto distribution was used to fit a real life data on the use of antiretroviral drugs. Molecular simulation of efficacy of antiretroviral drugs is conducted to evaluate the performance of the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Estimating the reliability function of Kumaraswamy distribution data
...Show More Authors

The aim of this study is to estimate the parameters and reliability function for kumaraswamy distribution of this two positive parameter  (a,b > 0), which is a continuous probability that has many characterstics with the beta distribution with extra advantages.

The shape of the function for this distribution and the most important characterstics are explained and estimated the two parameter (a,b) and the reliability function for this distribution by using the maximum likelihood method (MLE) and Bayes methods. simulation experiments are conducts to explain the behaviour of the estimation methods for different sizes depending on the mean squared error criterion the results show that the Bayes is bet

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Approach for estimating the unknown Scale parameter of Erlang Distribution Based on General Entropy Loss Function
...Show More Authors

We are used Bayes estimators for unknown scale parameter  when shape Parameter  is known of Erlang distribution. Assuming different informative priors for unknown scale  parameter. We derived The posterior density with posterior mean and posterior variance using different informative priors for unknown scale parameter  which are the inverse exponential distribution, the inverse chi-square distribution, the inverse Gamma distribution, and the standard Levy distribution as prior. And we derived Bayes estimators based on the general entropy loss function (GELF) is used the Simulation method to obtain the results. we generated different cases for the parameters of the Erlang model, for different sample sizes. The estimates have been comp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Estimation of Time of Survival Rate by Using Clayton Function for the Exponential Distribution with Practical Application
...Show More Authors

Each phenomenon contains several variables. Studying these variables, we find mathematical formula to get the joint distribution and the copula that are a useful and good tool to find the amount of correlation, where the survival function was used to measure the relationship of age with the level of cretonne in the remaining blood of the person. The Spss program was also used to extract the influencing variables from a group of variables using factor analysis and then using the Clayton copula function that is used to find the shared binary distributions using multivariate distributions, where the bivariate distribution was calculated, and then the survival function value was calculated for a sample size (50) drawn from Yarmouk Ho

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Ridge regression method with some classical methods to estimate the parameters of Lomax distribution by simulation
...Show More Authors

Abstract

In this research provide theoretical aspects of one of the most important statistical distributions which it is Lomax, which has many applications in several areas, set of estimation methods was used(MLE,LSE,GWPM) and compare with (RRE) estimation method ,in order to find out best estimation method set of simulation experiment (36) with many replications  in order  to get mean square error and used it to make compare , simulation experiment  contrast with (estimation method, sample size ,value of location and shape parameter) results show that estimation method effected by simulation experiment factors and ability of using other estimation methods such as(Shrinkage, jackknif

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Palestine Journal Of Mathematics
STATISTICAL PROPERTIES OF GENERALIZED EXPONENTIAL RAYLEIGH DISTRIBUTION
...Show More Authors

This paper demonstrates the construction of a modern generalized Exponential Rayleigh distribution by merging two distributions with a single parameter. The "New generalized Exponential-Rayleigh distribution" specifies joining the Reliability function of exponential pdf with the Reliability function of Rayleigh pdf, and then adding a shape parameter for this distribution. Finally, the mathematical and statistical characteristics of such a distribution are accomplished

View Publication Preview PDF
Scopus (3)
Scopus
Publication Date
Sat Nov 01 2014
Journal Name
International Journal Of Statistics
Single and Double Stage Shrinkage Estimators for the Normal Mean with the Variance Cases
...Show More Authors

View Publication
Publication Date
Wed Nov 22 2017
Journal Name
Farm Machinery And Processes Management In Sustainable Agriculture, Ix International Scientific Symposium
TESTING THE UNIFORMITY OF SPRAY DISTRIBUTION UNDER DIFFERENT APPLICATION PARAMETERS
...Show More Authors

View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of the Suggested loss Function with Generalized Loss Function for One Parameter Inverse Rayleigh Distribution
...Show More Authors

The experiences in the life are considered important for many fields, such as industry, medical and others. In literature, researchers are focused on flexible lifetime distribution.

In this paper, some Bayesian estimators for the unknown scale parameter  of Inverse Rayleigh Distribution have been obtained, of different two loss functions, represented by Suggested and Generalized loss function based on Non-Informative prior using Jeffery's and informative prior represented by Exponential distribution. The performance of   estimators is compared empirically with Maximum Likelihood estimator, Using Monte Carlo Simulation depending on the Mean Square Error (MSE). Generally, the preference of Bayesian method of Suggeste

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Some Estimation for the Parameters and Hazard Function of Kummer Beta Generalized Normal Distribution
...Show More Authors

Transforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr

... Show More
View Publication Preview PDF
Crossref