Preferred Language
Articles
/
jeasiq-1270
Using Artificial Neural Network Models For Forecasting & Comparison
...Show More Authors

The Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from the generation state company & to be considered as Exogenous variables to two methodologies, the sales activity in the General Company of Baghdad Electricity Distribution divides it's work to three stages:

  • Account the Sold Power.
  • Account the Value of the Sold Power.
  • Account the Cash Received.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Agricultural And Statistical Sciences
Forecasting the Saudi Crude Oil Price Using MS-GARCH Model
...Show More Authors

View Publication
Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
An Adaptive Digital Neural Network-Like-PID Control Law Design for Fuel Cell System Based on FPGA Technique
...Show More Authors

This paper proposes an on-line adaptive digital Proportional Integral Derivative (PID) control algorithm based on Field Programmable Gate Array (FPGA) for Proton Exchange Membrane Fuel Cell (PEMFC) Model. This research aims to design and implement Neural Network like a digital PID using FPGA in order to generate the best value of the hydrogen partial pressure action (PH2) to control the stack terminal output voltage of the (PEMFC) model during a variable load current applied. The on-line Particle Swarm Optimization (PSO) algorithm is used for finding and tuning the optimal value of the digital PID-NN controller (kp, ki, and kd) parameters that improve the dynamic behavior of the closed-loop digital control fue

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Apr 02 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Traffic Classification of IoT Devices by Utilizing Spike Neural Network Learning Approach
...Show More Authors

Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Tue Oct 25 2022
Journal Name
Minar Congress 6
HANDWRITTEN DIGITS CLASSIFICATION BASED ON DISCRETE WAVELET TRANSFORM AND SPIKE NEURAL NETWORK
...Show More Authors

In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database

View Publication Preview PDF
Publication Date
Mon Feb 20 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Text Encryption Algorithm Based on Chaotic Neural Network and Random Key Generator
...Show More Authors

This work presents a symmetric cryptography coupled with Chaotic NN , the encryption algorithm process the data as a blocks and it consists of multilevel( coding of character, generates array of keys (weights),coding of text and chaotic NN ) , also the decryption process consists of multilevel (generates array of keys (weights),chaotic NN, decoding of text and decoding of character).Chaotic neural network is used as a part of the proposed system with modifying on it ,the keys that are used in chaotic sequence are formed by proposed key generation algorithm .The proposed algorithm appears efficiency during the execution time where it can encryption and decryption long messages by short time and small memory (chaotic NN offer capacity of m

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Diagnosis and Classification of Type II Diabetes based on Multilayer Neural Network
...Show More Authors

     Diabetes is considered by the World Health Organization (WHO) as a main health problem globally. In recent years, the incidence of Type II diabetes mellitus was increased significantly due to metabolic disorders caused by malfunction in insulin secretion. It might result in various diseases, such as kidney failure, stroke, heart attacks, nerve damage, and damage in eye retina. Therefore, early diagnosis and classification of Type II diabetes is significant to help physician assessments.

The proposed model is based on Multilayer Neural Network using a dataset of Iraqi diabetes patients obtained from the Specialized Center for Endocrine Glands and Diabetes Diseases. The investigation includes 282 samples, o

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology
...Show More Authors

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Solid State Technology
Forecasting Crop Coefficient Values for Cucumber Plant (Cucumis sativus)
...Show More Authors

In this study predication of crop coefficient (Kc) values through growing season for cucumber plant was conducted. A field experiment was carried out at AL Yusufiyah Township, in the Governorate of Baghdad, (latitude: 33°09' N, longitude: 44°24' E, and altitude: 34 m) in medium loam soil. The plant was cultivated inside the greenhouse under subsurface trickle irrigation system with soil water retention technology (SWRT) during the growing season 2017. Crop coefficient values were guessed from the direct method of measurements of daily crop evapotranspiration, while reference evapotranspiration was obtained from Agricultural Meteorology Project - Station of Baghdad - Abu-Ghraib.&nbsp; The obtained results were showed that crop coeffici

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 30 2019
Journal Name
College Of Islamic Sciences
Mother in Contemporary Islamic Poetry _ An artistic study in models of contemporary Islamic poetry
...Show More Authors

This research deals with a part of our heritage and Arab culture, which is the poetry of contemporary Islamic poets, especially the poetry that was said in the mother in contemporary Islamic poetry, when extrapolating the offices of some contemporary Islamic poets found a clear presence of the mother, and during the search for the subject or its I found that the subject did not receive research and study, although the bureaus of contemporary Islamic poets included in it a huge amount of verses in which they stood at the mother Pharthua, and expressed their feelings and emotions towards them, and accordingly this research tagged (mother in contemporary Islamic poetry _ Dr Artistic models in models of contemporary Islamic poetry) to stand

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
PDF Comparison based on Various FSO Channel Models under Different Atmospheric Turbulence
...Show More Authors

Recently, wireless communication environments with high speeds and low complexity have become increasingly essential. Free-space optics (FSO) has emerged as a promising solution for providing direct connections between devices in such high-spectrum wireless setups. However, FSO communications are susceptible to weather-induced signal fluctuations, leading to fading and signal weakness at the receiver. To mitigate the effects of these challenges, several mathematical models have been proposed to describe the transition from weak to strong atmospheric turbulence, including Rayleigh, lognormal, Málaga, Nakagami-m, K-distribution, Weibull, Negative-Exponential, Inverse-Gaussian, G-G, and Fisher-Snedecor F distributions. This paper extensive

... Show More
View Publication Preview PDF
Crossref