Preferred Language
Articles
/
jeasiq-1270
Using Artificial Neural Network Models For Forecasting & Comparison
...Show More Authors

The Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from the generation state company & to be considered as Exogenous variables to two methodologies, the sales activity in the General Company of Baghdad Electricity Distribution divides it's work to three stages:

  • Account the Sold Power.
  • Account the Value of the Sold Power.
  • Account the Cash Received.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Sep 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Density and Approximation by Using Feed Forward Artificial Neural Networks
...Show More Authors

I n  this  paper ,we 'viii  consider  the density  questions  associC;lted with  the single  hidden layer feed forward  model. We proved  that a FFNN   with   one   hidden   layer  can   uniformly   approximate   any continuous  function  in C(k)(where k is a compact set in R11 ) to any required accuracy.

 

However, if the set of basis function is dense then the ANN's can has al most one hidden layer. But if the set of basis function  non-dense, then we  need more  hidden layers. Also, we have shown  that there exist  localized functions and that there is no t

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Performance Improvement of Neural Network Based RLS Channel Estimators in MIMO-OFDM Systems
...Show More Authors

The objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 17 2017
Journal Name
International Journal Of Science And Research (ijsr)
Detection System of Varicose Disease using Probabilistic Neural Network
...Show More Authors

Publication Date
Sat Jan 01 2022
Journal Name
Proceedings Of International Conference On Computing And Communication Networks
Speech Age Estimation Using a Ranking Convolutional Neural Network
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Sustainable Chemistry And Pharmacy
A sustainable approach to utilize olive pips for the sorption of lead ions: Numerical modeling with aid of artificial neural network
...Show More Authors

Scopus (23)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Wed Mar 28 2018
Journal Name
Iraqi Journal Of Science
Hybrid Approach of Prediction Daily Maximum and Minimum Air Temperature for Baghdad City by Used Artificial Neural Network and Simulated Annealing
...Show More Authors

     Temperature predicting is the utilization to forecast the condition of the temperature for an upcoming date for a given area. Temperature predictions are done by gathering quantitative data in regard to the current state of the atmosphere. In this study, a proposed hybrid method to predication the daily maximum and minimum air temperature of Baghdad city which combines standard backpropagation with simulated annealing (SA). Simulated Annealing Algorithm are used for weights optimization for recurrent multi-layer neural network system. Experimental tests had been implemented using the data of maximum and minimum air temperature for month of July of Baghdad city that got from local records of Iraqi Meteorological O

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Application of Artificial Neural Network for Predicting Iron Concentration in the Location of Al-Wahda Water Treatment Plant in Baghdad City
...Show More Authors

Iron is one of the abundant elements on earth that is an essential element for humans and may be a troublesome element in water supplies.  In this research an AAN model was developed to predict iron concentrations in the location of Al- Wahda water treatment plant in Baghdad city by water quality assessment of iron concentrations at seven WTPs up stream Tigris River. SPSS software was used to build the ANN model. The input data were iron concentrations in the raw water for the period 2004-2011. The results indicated the best model predicted Iron concentrations at Al-Wahda WTP with a coefficient of determination 0.9142. The model used one hidden layer with two nodes and the testing error was 0.834. The ANN model coul

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Boltzmann Machine Neural Network for Arabic Speech Recognition
...Show More Authors

Boltzmann mach ine neural network bas been used to recognize the Arabic speech.  Fast Fourier transl(>lmation algorithm has been used t() extract speciral 'features from an a caustic signal .

The  spectral  feature size is reduced by series of operations in

order to make it salable as input for a neural network which is used as a recogni zer by Boltzmann Machine Neural  network which has been used as a recognizer for phonemes . A training set consist of a number of Arabic phoneme repesentations, is used to train lhe neuntl network.

The neural network recognized Arabic. After Boltzmann Machine Neura l    network   training  the  system   with 

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
The effect of the activation functions on the classification accuracy of satellite image by artificial neural network
...Show More Authors

View Publication
Scopus (14)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ssrn Electronic Journal
The Prospective of Artificial Neural Network (ANN’s) Model Application to Ameliorate Management of Post Disaster Engineering Projects
...Show More Authors

Currently and under the COVID-19 which is considered as a kind of disaster or even any other natural or manmade disasters, this study was confirmed to be important especially when the society is proceeding to recover and reduce the risks of as possible as injuries. These disasters are leading somehow to paralyze the activities of society as what happened in the period of COVID-19, therefore, more efforts were to be focused for the management of disasters in different ways to reduce their risks such as working from distance or planning solutions digitally and send them to the source of control and hence how most countries overcame this stage of disaster (COVID-19) and collapse. Artificial intelligence should be used when there is no practica

... Show More
View Publication
Crossref (1)
Crossref