In this paper, we will study non parametric model when the response variable have missing data (non response) in observations it under missing mechanisms MCAR, then we suggest Kernel-Based Non-Parametric Single-Imputation instead of missing value and compare it with Nearest Neighbor Imputation by using the simulation about some difference models and with difference cases as the sample size, variance and rate of missing data.
The ultimate goal of any sale contract is to maximize the combined returns of the parties, knowing that these returns are not realized (in long-term contracts) except in the final stages of the contract. Therefore, this requires the parties to the contract to leave some elements open, including the price, because the adoption of a fixed price and inflexible will not be appropriate to meet their desires when contracting, especially with ignorance of matters beyond their will and may affect the market conditions, and the possibility of modifying the fixed price through The elimination is very limited, especially when the parties to the contract are equally in terms of economic strength. Hence, in order to respond to market uncertainties, the
... Show MoreThe current research aims to reveal the level of satisfaction of the mentors with the evaluation of their performance according to gender (male - female) and to formulate the predictive equation for the level of performance (dependent variable) from knowing the level of satisfaction with the evaluation (independent variable). (16 paragraphs) contains alternatives to the answer that measures the level of satisfaction (weak, medium, and high) (1,2,3), that is, with a hypothetical average of (32). It consisted of 100 educational counselors consisting of 45 males and 55 females, the results of the research concluded that the level of satisfaction with performance is below the mean when compared with the hypothetical average of the scale of s
... Show MoreA case–control study (80 patients with chronic hepatitis B virus [HBV] infection and 96 controls) was performed to evaluate the association of an IL12A gene variant (rs582537 A/C/G) with HBV infection. Allele G showed a signifcantly lower frequency in patients compared to controls (31.2 vs. 46.9%; probability [p]=0.009; corrected p [pc]=0.027) and was associated with a lower risk of HBV infection (odds ratio [OR]=0.49; 95% confdence interval [CI]=0.29–0.83). A similar lower risk was associated with genotypes CG (17.5 vs. 29.2; OR=0.25; 95% CI=0.08–0.81; p=0.02) and GG (10.0 vs. 16.7; OR=0.25; 95% CI=0.07–0.91; p=0.036), but the pc value was not signifcant (0.12 and 0.126, respec‑ tively). Serum IL35 levels showed signifcant difere
... Show MoreEstimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust M method after their development through the use of sequential approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate
... Show MoreToday, there are large amounts of geospatial data available on the web such as Google Map (GM), OpenStreetMap (OSM), Flickr service, Wikimapia and others. All of these services called open source geospatial data. Geospatial data from different sources often has variable accuracy due to different data collection methods; therefore data accuracy may not meet the user requirement in varying organization. This paper aims to develop a tool to assess the quality of GM data by comparing it with formal data such as spatial data from Mayoralty of Baghdad (MB). This tool developed by Visual Basic language, and validated on two different study areas in Baghdad / Iraq (Al-Karada and Al- Kadhumiyah). The positional accuracy was asses
... Show MoreThis paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima
... Show MoreOne of the most common metabolic illnesses in the world is diabetes mellitus. This metabolic disease is responsible for a large percentage of the burden of kidney damage and dysfunction. The goal of this study was to look into the renal function of diabetic patients using metformin monotherapy who came to Mosul's Al-Wafaa diabetes care and research facility. During the period 1 January 2021 to 30 April 2021, 47 patients with T2DM (age 50.48 7.74 years) were enrolled in this case-control study. These patients' results were compared to a control group of 47 seemingly healthy people (age 45.89 9.06 years). All participants' demographic and medical histories were acquired through the delivery of a questionnaire. Blood samples were collected
... Show MoreIn this research, we present a nonparametric approach for the estimation of a copula density using different kernel density methods. Different functions were used: Gaussian, Gumbel, Clayton, and Frank copula, and through various simulation experiments we generated the standard bivariate normal distribution at samples sizes (50, 100, 250 and 500), in both high and low dependency. Different kernel methods were used to estimate the probability density function of the copula with marginal of this bivariate distribution: Mirror – Reflection (MR), Beta Kernel (BK) and transformation kernel (KD) method, then a comparison was carried out between the three methods with all the experiments using the integrated mean squared error. Furthermore, some
... Show MoreThe added value of internal audit greatly contributes to adding value to the institution, but most departments of economic units in Iraq neglected the role of internal audit and the added value that can be achieved by those institutions, since the term added value of internal audit is a relatively vague term from the premise that what cannot be measured is difficult Determine it, and perhaps descriptive standards for it is the extent of compliance with international auditing standards (IIA).
The research aims to study the procedures and results of auditing to verify that they have given an added value to the audit with a positive impact, develop its aspects and research, identify deficiencies for the audi
... Show MoreSupport vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show More