In this study, we review the ARIMA (p, d, q), the EWMA and the DLM (dynamic linear moodelling) procedures in brief in order to accomdate the ac(autocorrelation) structure of data .We consider the recursive estimation and prediction algorithms based on Bayes and KF (Kalman filtering) techniques for correlated observations.We investigate the effect on the MSE of these procedures and compare them using generated data.
A new distribution, the Epsilon Skew Gamma (ESΓ ) distribution, which was first introduced by Abdulah [1], is used on a near Gamma data. We first redefine the ESΓ distribution, its properties, and characteristics, and then we estimate its parameters using the maximum likelihood and moment estimators. We finally use these estimators to fit the data with the ESΓ distribution
The present study aims to investigate the seroprevalence rate of Toxoplasma gondii infection and its relation to some demographic factors among males in Duhok province/Iraq. A total of 424 random blood samples were collected from the male population of different ages (18-60) years and different social-economic classes. Out of 424 samples examined, 108 (25.47%) were seropositive to the anti- T. gondii antibodies; 88 (20.75%) were found seropositive for IgG, while 20 (4.72%) samples were seropositive for IgM. Regarding occupation, the highest percentage for chronic toxoplasmosis was reported in workers followed by policemen and pensioners at rates of 23.96%, 23.6%, and 23.07%, respectively. The age group 18-30 y
... Show MoreEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreThe estimation of the regular regression model requires several assumptions to be satisfied such as "linearity". One problem occurs by partitioning the regression curve into two (or more) parts and then joining them by threshold point(s). This situation is regarded as a linearity violation of regression. Therefore, the multiphase regression model is received increasing attention as an alternative approach which describes the changing of the behavior of the phenomenon through threshold point estimation. Maximum likelihood estimator "MLE" has been used in both model and threshold point estimations. However, MLE is not resistant against violations such as outliers' existence or in case of the heavy-tailed error distribution. The main goal of t
... Show MoreAccurate predictive tools for VLE calculation are always needed. A new method is introduced for VLE calculation which is very simple to apply with very good results compared with previously used methods. It does not need any physical property except each binary system need tow constants only. Also, this method can be applied to calculate VLE data for any binary system at any polarity or from any group family. But the system binary should not confirm an azeotrope. This new method is expanding in application to cover a range of temperature. This expansion does not need anything except the application of the new proposed form with the system of two constants. This method with its development is applied to 56 binary mixtures with 1120 equili
... Show MoreIn this research we assumed that the number of emissions by time (𝑡) of radiation particles is distributed poisson distribution with parameter (𝑡), where < 0 is the intensity of radiation. We conclude that the time of the first emission is distributed exponentially with parameter 𝜃, while the time of the k-th emission (𝑘 = 2,3,4, … . . ) is gamma distributed with parameters (𝑘, 𝜃), we used a real data to show that the Bayes estimator 𝜃 ∗ for 𝜃 is more efficient than 𝜃̂, the maximum likelihood estimator for 𝜃 by using the derived variances of both estimators as a statistical indicator for efficiency
Among the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On the
... Show MoreIn the current digitalized world, cloud computing becomes a feasible solution for the virtualization of cloud computing resources. Though cloud computing has many advantages to outsourcing an organization’s information, but the strong security is the main aspect of cloud computing. Identity authentication theft becomes a vital part of the protection of cloud computing data. In this process, the intruders violate the security protocols and perform attacks on the organizations or user’s data. The situation of cloud data disclosure leads to the cloud user feeling insecure while using the cloud platform. The different traditional cryptographic techniques are not able to stop such kinds of attacks. BB84 protocol is the first quantum cry
... Show More