Preferred Language
Articles
/
jeasiq-1011
A comparison Some of Methods for Estimating Survival Function for Truncated Exponential Distribution
...Show More Authors

Exponential distribution is one of most common distributions in studies and scientific researches with wide application in the fields of reliability, engineering and in analyzing survival function therefore the researcher has carried on extended studies in the characteristics of this distribution.

In this research, estimation of survival function for truncated exponential distribution in the maximum likelihood  methods and Bayes first and second method, least square method and Jackknife dependent in the first place on the maximum likelihood method, then on Bayes first method then comparing then using simulation, thus to accomplish this task, different size samples have been adopted by the searcher using (10, 20,30,50,100) results gained proved that second Bayes method domination upon all other method and for all samples

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Semi-parametric Methods in Partial Linear Single-Index Model
...Show More Authors

The research dealt with a comparative study between some semi-parametric estimation methods to the Partial linear Single Index Model using simulation. There are two approaches to model estimation two-stage procedure and MADE to estimate this model. Simulations were used to study the finite sample performance of estimating methods based on different Single Index models, error variances, and different sample sizes , and the mean average squared errors were used as a comparison criterion between the methods were used. The results showed a preference for the two-stage procedure depending on all the cases that were used

View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
A Comparative Study for Estimate Fractional Parameter of ARFIMA Model
...Show More Authors

      Long memory analysis is one of the most active areas in econometrics and time series where various methods have been introduced to identify and estimate the long memory parameter in partially integrated time series. One of the most common models used to represent time series that have a long memory is the ARFIMA (Auto Regressive Fractional Integration Moving Average Model) which diffs are a fractional number called the fractional parameter. To analyze and determine the ARFIMA model, the fractal parameter must be estimated. There are many methods for fractional parameter estimation. In this research, the estimation methods were divided into indirect methods, where the Hurst parameter is estimated fir

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Multistage and Numerical Discretization Methods for Estimating Parameters in Nonlinear Linear Ordinary Differential Equations Models.
...Show More Authors

Many of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed May 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Experimental Comparison between Classical and Bayes Estimators for the Parameter of Exponential Distribution
...Show More Authors

This paper is interested in comparing the performance of the traditional methods to estimate parameter of exponential distribution (Maximum Likelihood Estimator, Uniformly Minimum Variance Unbiased Estimator) and the Bayes Estimator in the case of data to meet the requirement of exponential distribution and in the case away from the distribution due to the presence of outliers (contaminated values). Through the employment of simulation (Monte Carlo method) and the adoption of the mean square error (MSE) as criterion of statistical comparison between the performance of the three estimators for different sample sizes ranged between small, medium and large        (n=5,10,25,50,100) and different cases (wit

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Comparison Between the MLE and Standard Bayes Estimators of the Reliability Function of Exponential Distribution
...Show More Authors

     In this paper, a Monte Carlo Simulation technique is used to compare the performance of MLE and the standard Bayes estimators of the reliability function of the one parameter exponential distribution.Two types of loss functions are adopted, namely, squared error  loss function (SELF) and modified square error loss function (MSELF) with informative and non- informative prior. The criterion integrated mean square error (IMSE) is employed to assess the performance of such estimators .

View Publication Preview PDF
Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using Genetic Algorithm to Estimate the Parameters of the Gumbel Distribution Function by Simulation
...Show More Authors

In this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as  the Bayes method. The comparison was made using the mean error squares (MSE), where the best  estimator  is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).

View Publication Preview PDF
Crossref
Publication Date
Fri Apr 12 2019
Journal Name
Journal Of Economics And Administrative Sciences
Compare between simex and Quassi-likelihood methods in estimation of regression function in the presence of measurement error
...Show More Authors

       In recent years, the attention of researchers has increased of semi-parametric regression models, because it is possible to integrate the parametric and non-parametric regression models in one and then form a regression model has the potential to deal with the cruse of dimensionality in non-parametric models that occurs through the increasing of explanatory variables. Involved in the analysis and then decreasing the accuracy of the estimation. As well as the privilege of this type of model with flexibility in the application field compared to the parametric models which comply with certain conditions such as knowledge of the distribution of errors or the parametric models may

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Some Estimation for the Parameters and Hazard Function of Kummer Beta Generalized Normal Distribution
...Show More Authors

Transforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Simulation of five methods for parameter estimation and functionExponential distribution reliability
...Show More Authors
The estimation process is one of the pillars of the statistical inference process as well as the hypothesis test, and the assessment is based on the collection of information and conclusions about the teacher or the community's teachers on the basis of the result
... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some robust methods to estimate parameters of partial least squares regression (PLSR)
...Show More Authors

   The technology of reducing dimensions and choosing variables are very important topics in statistical analysis to multivariate. When two or more of the predictor variables are linked in the complete or incomplete regression relationships, a problem of multicollinearity are occurred which consist of the breach of one basic assumptions of the ordinary least squares method with incorrect estimates results.

 There are several methods proposed to address this problem, including the partial least squares (PLS), used to reduce dimensional regression analysis. By using linear transformations that convert a set of variables associated with a high link to a set of new independent variables and unr

... Show More
View Publication Preview PDF
Crossref