China is moving towards building the largest economic power in the world, so what does this mean economically and politically for Europe, America, the Middle East and the Arab world? This project is called the expansionist Chinese Marshall Plan which is a revival of the old Silk Road in a new way. It represents the aspirations of the Chinese people and their president, Xi Jinping, to build a transport route from Asia to Europe and a railway plan to transport goods. The purpose of this is to develop the economic growth model, expand into new markets, promote the Chinese currency, and expand economic and political influence in the areas covered by the Chinese initiative. Equal opportunities in distributing investments to these countries, and the emergence of the importance of the Chinese project is due to the world’s need for stability, security, and peaceful coexistence away from the economic crises experienced by Europe or the armed conflicts experienced by the Arab countries. It is a huge economic and global project that can achieve profits for the participating countries.
The research study is important since it establishes predicted rates for various nervous system functional indicators.In terms of performing the skill of Dribbling in basketball for young players in Baghdad Governorate in order to reach scientific results that serve researchers, coaches, and players uniformly. The study's goal is to create predictive equations for specific functional indicators of the nervous system in relation to the Dribbling skill performance of young basketball players in Baghdad Governorate. The researchers used a descriptive approach with a survey method on (8) youth basketball league clubs in Baghdad Governorate for the 2022-2023 sports season, totaling (96) players . Three tests were used to measure the nervous sy
... Show MoreThe present study is to investigate the possibility of using wastes in the form of scrap iron (ZVI) and/ or aluminum ZVAI for the detention and immobilization of the chromium ions in simulated wastewater. Different batch equilibrium parameters such as contact time (0-250) min, sorbent dose (2-8 g ZVI/100 mL and 0.2-1 g ZVAI/100 mL), initial pH (3-6), initial pollutant concentration of 50 mg/L, and speed of agitation (0-250) rpm were investigated. Maximum contaminant removal efficiency corresponding to (96 %) at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed were obtained.
The best isotherm model for the batch single Cr(III) uptake by ZVI
... Show MoreIn this paper, an inexpensive, simple and well-accurate process of the generation of bimetallic silver Ag//gold Au core//shell is colloidal metal nanoparticles (MNPs). This is achieved via an atmospheric pressure non-thermal plasma glow discharge between two electrodes. One of these electrodes is a capillary tube placing over solution about (1 cm) that acts as the cathode, while the other electrode is a metal disk immersed in the solution and acts as an anode. Glow discharge process carried out at room temperature using a home-made cell with (6 KV) applied voltage and direct current (DC) about (1.8 mA) for different discharge periods. A wide range of bimetallic Ag//Au colloidal MNPs was rapidly synthesized as a result of non-thermal plas
... Show MoreConcrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into
... Show MoreThe main objective of this study is to develop a rate of penetration (ROP) model for Khasib formation in Ahdab oil field and determine the drilling parameters controlling the prediction of ROP values by using artificial neural network (ANN).
An Interactive Petrophysical software was used to convert the raw dataset of transit time (LAS Readings) from parts of meter-to-meter reading with depth. The IBM SPSS statistics software version 22 was used to create an interconnection between the drilling variables and the rate of penetration, detection of outliers of input parameters, and regression modeling. While a JMP Version 11 software from SAS Institute Inc. was used for artificial neural modeling.
&nb
... Show MoreSpectrophotometric method was developed for the determination of copper(II) ion. Synthesized (2,2[O-Tolidine-4,4-bis azo]bis[4,5-diphenyl imidazole]) (MBBAI) was used as chromogenic reagent at pH=5. Various factors affecting complex formation, such as, pH effect, reagent concentration, time effect and temperature effect, have been considered and studied. Under optimum conditions concentration ranged from (5.00-80.00) µg/mL of copper(II) obeyed Beer`s Low. Maximum absorption of the complex was 409nm with molar absorpitivity 0.127x104 L mol-1 cm-1. Limit of detection(LOD) and Limit of quantification were 1.924 and 6.42 μg/mL, respectively.
... Show MoreGas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t
As a result of rapid industrialization and population development, toxic chemicals have been introduced into water systems in recent decades. Because of its excellent efficiency and simple design, the three-dimensional (3D) electro-Fenton method has been used for the treatment of wastewater. The goal of the current study is to explore the efficiency of phenol removal by the 3D electro-Fenton process, which is one of the advanced oxidation processes (AOPs). In the present work, the effect of the addition of granular activated carbon (GAC) particles to the electro-Fenton system as the third electrode would be investigated in the presence of graphite as the anode and nickel foam as the cathode, which is the source of electro-generated hydrogen
... Show More