During the 1970s, communicative view of language teaching began to be incorporated into syllabus design. The central question for the proponents of this view was: what does the learner want/need to do with the target language? This lead to the emergence of a teaching method (or approach) called communicative language teaching (CLT) during the late 1970s and early 1980s focusing on the functions that must be incorporated into a classroom. According to Brown (2001:43) CLT is a unified but broadly based, theoretically well informed set of tenets about the nature of language and of language learning and teaching. Harmer (2001:84) states that the communicative approach is the name which was given to a set of beliefs which included not only a re-examination of what aspects of language to teach, but also a shift in emphasis in how to teach. The "what to teach" aspect of the CLT stressed the significance of language functions rather than
151
focusing solely on grammar and vocabulary. The "how to teach" aspect of the CLT is closely related to the idea that language learning will take care of itself, and that plentiful exposure to language in use and plenty of opportunities to use it are vitally important for a student's development of knowledge and skill.
Variable selection in Poisson regression with high dimensional data has been widely used in recent years. we proposed in this paper using a penalty function that depends on a function named a penalty. An Atan estimator was compared with Lasso and adaptive lasso. A simulation and application show that an Atan estimator has the advantage in the estimation of coefficient and variables selection.
The group for the multiplication of closets is the set G|N of all closets of N in G, if G is a group and N is a normal subgroup of G. The term “G by N factor group” describes this set. In the quotient group G|N, N is the identity element. In this paper, we procure K(SL(2,125)) and K(SL(2,3125)) from the character table of rational representations for each group.
A factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure. In this paper, the factor groups K(SL(2,121)) and K(SL(2,169)) computed for each group from the character table of rational representations.
For any group G, we define G/H (read” G mod H”) to be the set of left cosets of H in G and this set forms a group under the operation (a)(bH) = abH. The character table of rational representations study to gain the K( SL(2,81)) and K( SL(2, 729)) in this work.