During the 1970s, communicative view of language teaching began to be incorporated into syllabus design. The central question for the proponents of this view was: what does the learner want/need to do with the target language? This lead to the emergence of a teaching method (or approach) called communicative language teaching (CLT) during the late 1970s and early 1980s focusing on the functions that must be incorporated into a classroom. According to Brown (2001:43) CLT is a unified but broadly based, theoretically well informed set of tenets about the nature of language and of language learning and teaching. Harmer (2001:84) states that the communicative approach is the name which was given to a set of beliefs which included not only a re-examination of what aspects of language to teach, but also a shift in emphasis in how to teach. The "what to teach" aspect of the CLT stressed the significance of language functions rather than
151
focusing solely on grammar and vocabulary. The "how to teach" aspect of the CLT is closely related to the idea that language learning will take care of itself, and that plentiful exposure to language in use and plenty of opportunities to use it are vitally important for a student's development of knowledge and skill.
The method of operational matrices is based on the Bernoulli and Shifted Legendre polynomials which is used to solve the Falkner-Skan equation. The nonlinear differential equation converting to a system of nonlinear equations is solved using Mathematica®12, and the approximate solutions are obtained. The efficiency of these methods was studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as increases. Moreover, the obtained approximate solutions are compared with the numerical solution obtained by the fourth-order Runge-Kutta method (RK4), which gives a good agreement.
For any group G, we define G/H (read” G mod H”) to be the set of left cosets of H in G and this set forms a group under the operation (a)(bH) = abH. The character table of rational representations study to gain the K( SL(2,81)) and K( SL(2, 729)) in this work.
A factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure. In this paper, the factor groups K(SL(2,121)) and K(SL(2,169)) computed for each group from the character table of rational representations.
The group for the multiplication of closets is the set G|N of all closets of N in G, if G is a group and N is a normal subgroup of G. The term “G by N factor group” describes this set. In the quotient group G|N, N is the identity element. In this paper, we procure K(SL(2,125)) and K(SL(2,3125)) from the character table of rational representations for each group.