Jurisprudence is one of the most honorable sciences in value, and the greatest of them in reward. Through it, the rulings of religion are known. He, may God’s prayers and peace be upon him, said: ((Whoever God desires good, He gives him understanding of religion)), and through it, the legal rulings and what is related to them are known from what is permissible and forbidden.
And prayer is the believer’s ascent to his Lord, with which the heart is at peace and the soul is at ease. If he, may God’s prayers and peace be upon him, was overwhelmed by an issue or something became difficult for him, he would panic in prayer and be reassured by it. It was necessary for the students of knowledge to investigate its aspects and its secrets, and to delve into the depths of its secrets, because it lives with the Muslim, young, young and old...
And I saw that I chose this title because I found that this subject abounded in sayings that ranged between strict and lenient.
Controversy abounded over a fatwa permitting the performance of prayers three times a day under the pretext of modern necessities, and they opened the door wide without a legal control.
In this field, men of Islamic thought were tolerant, such as Professor Jamal Al-Banna, who considered gathering as one of the necessities of the age, and he attributed that to the conditions that countries go through due to the busyness of times and work.
The jurists of our time were strict in this field, so they closed the door and locked it without looking at the legal texts that have flexibility for specific cases.
This research came to review the opinions of all the schools, and I discussed the evidence and showed the correct from the weak, then the more correct from the sayings.
This is one of the fruits of our effort that we present to our brothers so that they may stand upon the greatness of Islam and its validity for every time and place, and know the ease of this religion, and that he, may God’s prayers and peace be upon him, has been sent with the tolerant Hanafiyyah that only the doomed depart from it.
Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.
The aim of this paper is to introduces and study the concept of CSO-compact space via the notation of simply-open sets as well as to investigate their relationship to some well known classes of topological spaces and give some of his properties.
In the present paper, a simply* compact spaces was introduced it defined over simply*- open set previous knowledge and we study the relation between the simply* separation axioms and the compactness, in addition to introduce a new types of functions known as 𝛼𝑆 𝑀∗ _irresolte , 𝛼𝑆 𝑀∗ __𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 and 𝑅 𝑆 𝑀∗ _ continuous, which are defined between two topological spaces.
Weibull Distribution is one of most important distribution and it is mainly used in reliability and in distribution of life time. The study handled two parameter and three-parameter Weibull Distribution in addition to five –parameter Bi-Weibull distribution. The latter being very new and was not mentioned before in many of the previous references. This distribution depends on both the two parameter and the three –parameter Weibull distributions by using the scale parameter (α) and the shape parameter (b) in the first and adding the location parameter (g)to the second and then joining them together to produce a distribution with five parameters.
... Show MoreA gamma T_ pure sub-module also the intersection property for gamma T_pure sub-modules have been studied in this action. Different descriptions and discuss some ownership, as Γ-module Z owns the TΓ_pure intersection property if and only if (J2 ΓK ∩ J^2 ΓF)=J^2 Γ(K ∩ F) for each Γ-ideal J and for all TΓ_pure K, and F in Z Q/P is TΓ_pure sub-module in Z/P, if P in Q.
In this paper we study the notion of preradical on some subcategories of the category of semimodules and homomorphisms of semimodules.
Since some of the known preradicals on modules fail to satisfy the conditions of preradicals, if the category of modules was extended to semimodules, it is necessary to investigate some subcategories of semimodules, like the category of subtractive semimodules with homomorphisms and the category of subtractive semimodules with ҽҟ-regular homomorphisms.
Many letters and theses written on the subject of consensus, as well as in measurement,
But we tried to address a topic of consensus
Building a blind measuring guide.
We have tried to explain the meaning of convening, then the statement of consensus in language and terminology and then the statement of measurement
Also, we have shown the types of consensus mentioned by the jurists, and this is how much was in the first topic, either
The second section included the statement of the doctrines of the blind in the matter, and then the evidence of each doctrine and discussed.
We followed it with the most correct opinion statement and concluded the research with some of the conclusions we reached through
search.
The aim of this paper is to generate topological structure on the power set of vertices of digraphs using new definition which is Gm-closure operator on out-linked of digraphs. Properties of this topological structure are studied and several examples are given. Also we give some new generalizations of some definitions in digraphs to the some known definitions in topology which are Ropen subgraph, α-open subgraph, pre-open subgraph, and β-open subgraph. Furthermore, we define and study the accuracy of these new generalizations on subgraps and paths.
Let R be a commutative ring with identity and M be a unitary R- module. We shall say that M is a primary multiplication module if every primary submodule of M is a multiplication submodule of M. Some of the properties of this concept will be investigated. The main results of this paper are, for modules M and N, we have M N and HomR (M, N) are primary multiplications R-modules under certain assumptions.
Let R be a commutative ring with identity, and M be unital (left) R-module. In this paper we introduce and study the concept of small semiprime submodules as a generalization of semiprime submodules. We investigate some basis properties of small semiprime submodules and give some characterizations of them, especially for (finitely generated faithful) multiplication modules.