This study attempts to address the importance of communicative digitization in the field of various arts for the sake of continuity of shopping and aesthetic, artistic and intellectual appreciation of artistic achievements by the recipient on various places of their residence in light of the COVID 19 crisis, and to highlight the importance of the plastic arts of the Iraqi painter exclusively and how it expresses in a contemporary way the environment or life reality in Iraq in light of this crisis. With all its implications affecting the life reality from various aspects and methods of its negative and positive employment. As for the research procedures, the researcher reviewed the research methodology represented by the descriptive analytical approach and the research sample, which included (4) samples, and concluded by analyzing samples, as the most important results were reviewed, among which were: The COVID-19 had an impact on the production and creativity of the contemporary Iraqi artist that accumulated from the life reality (negative and positive to combat it) in the human community in light of this crisis, and that digital communication appeared in COVID-19 in a large way and its importance for the continuation of artistic cultural communication for artistic achievements
Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreCladophora and Spirulina algae biomass have been used for the removal of Tetracycline (TC) antibiotic from aqueous solution. Different operation conditions were varied in batch process, such as initial antibiotic concentration, different biomass dosage and type, contact time, agitation speed, and initial pH. The result showed that the maximum removal efficiencies by using 1.25 g/100 ml Cladophora and 0.5 g/100 ml Spirulina algae biomass were 95% and 94% respectively. At the optimum experimental condition of temperature 25°C, initial TC concentration 50 mg/l, contact time 2.5hr, agitation speed 200 rpm and pH 6.5. The characterization of Cladophora and Spirulina biomass by Fourier transform infrared (FTIR) indicates that the presenc
... Show MoreThis paper deals with the subjective reflections of consumer values on fashion design. The consumer self is determined by the consumer's idea of himself, according to the intellectual, spiritual and social values, and these values take their intellectual reflection in the form of material values that the consumer finds in fashion design. These values are based on considerations between what is intellectual represented by the values of the consumer, and what is material determined by the fashion design, which also proceed from values that are visible or implied in costume design, such as the function, beauty and symbol. The consumer self gets its material image represented in the
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show More