The Child's theatre was and still is the most investing art for masks of all kinds (partial and total) for suspense, aesthetic and artistic purposes that meet the requirements of those performances. Here the actor's performance is associated with two tools, i.e. the body and the mask, where it has become a must to search for the performance transformations required in order to achieve the highest level of the right performance through this dualism. This urged the researcher to address this problem. Thus, the researcher has put forward an objective to identify the transformations of the character's performance between the body and the mask in the child's theatre shows. The research consists of a methodological framework and a theoretical framework, in which the dualisms of the body and mask, sound and motion, function and significance, are addressed. Then the researcher formulated indicators used as standards to analyze a sample consistent with his research limits. Finally, the research ends with results and conclusions. The most significant of these results is the direct connection between the voice and motion performance of the actor with the nature of the mask that he is wearing and what it signifies in order to create the perfection between the shape of the mask and the structure of the voice and motion performance of the character. The study has concluded with a list of the resources and an abstract in English
This study aims to evaluate the adsorption isotherm of carbon microparticles prepared from pumpkin (Cucurbita maxima) seeds for adsorbing curcumin (as a model of dye). The results were derived and compared using the kinetics approach based on several standard adsorption isotherm models, namely the Langmuir, Temkin, Freundlich, and Dubinin-Radushkevich models. The second aim is to evaluate the effects of carbon particle size (from 100 to 1000 mm) on the adsorption characteristics. The experimental results showed that the adsorption on the surface of carbon microparticles occurred in monolayer with a physical phenomenon. This is because the active areas are located only on the outer surface of carbon and no surface structure in th
... Show MoreDental amalgam is a mixture of approximately 50% mercury and varying ratios of silver, tin, zinc, and copper. Dental amalgam is a major source of mercury pollution because it is readily absorbed through 90-100% vapour and the oral mucosa. In addition, in certain situations with the oral environment, various types of metallic orthodontic brackets are highly aggressive and can lead to corrosion. However, polyvinyl alcohol (PVA) material has no cytogenetic effects on human health or the environment and is therefore applied in the manufacturing of the new composite material. Different additives from the bonding agent (PVA; 2.4, 4.8, and 7.2 g) dissolved in about 10 ml of water, heated on a hot plate under a hig
... Show MoreTin Selenide (SnSe) Nano crystalline thin films of thickness 400±20 nm were deposited on glass substrate by thermal evaporation technique at R.T under a vacuum of ∼ 2 × 10− 5 mbar to study the effect of annealing temperatures (as-deposited, 100, 150 and 200) °C on its structural, surface morphology and optical properties. The films structure was characterized using X-ray diffraction (XRD) which showed that all the films have polycrystalline in nature and orthorhombic structure, with the preferred orientation along the (111) plane. These films was synthesized of very fine crystallites size of (14.8-24.5) nm, the effect of annealing temperatures on the cell parameters, crystallite size and dislocation density were observed.
... Show MoreIn this study, titanium dioxide (TiO2 (are synthesized by sol– gel simple method. Thin films of sol, gel, and sol- gel on relatively flat glass substrates are applied with Spin coating technique with multilayers. The optical and morphological properties (studied using AFM) of TiO2 layers show good properties, with particles diameters less than 4 nm for all prepared samples and have maximum length 62 nm for TiO2 gel thin films of three layers. The results show low roughness values for all films especially for 4 layers sol (8.37nm), which improve the application in dye sensitive solar cell (DSSc) .
The importance of the current research lies in the importance of teaching competencies and the ability of the teacher to deal and success in his educational career. The research aimed to identify the degree of teaching competencies according to Hermann model of physical education teachers in Baghdad governorate. The descriptive method using the survey method was used on a randomly selected sample of 462 teachers and 314 school principals. After the completion of the survey, the Hermann scale forms were distributed to the teachers. The forms of the teaching competency scale were distributed to their school principals as the direct supervisors of the teachers' evaluation. After completing the survey, the results of each scale were classified
... Show MoreIn this research, CNRs have been synthesized using pyrolysis of plastic waste(pp) at 1000 ° C for one hour in a closed reactor made from stainless steel, using magnesium oxide (MgO) as a catalyst. The resultant carbon nano rods were purified and characterized using energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD). The surface characteristics of carbon rods were observed with the Field emission scanning electron microscopy (FESEM). The carbon was evenly spread and had the highest concentration from SEM-EDX characterization. The results of XRD and FESEM have shown that carbon Nano rods (CNRs) were present in Nano figures, synthesized at 1000 ° C and with pyrolysis temperature 400° C. One of t
... Show MoreTillage tools are subject to friction and low-stress abrasive wear processes with the potential deterioration of the desired soil quality, loss of mechanical weed efficacy, and downtime for replacing worn tools. Limited experimental methods exist to quantify investigate the effect of wear-resistant coatings on shape parameters of soil-engaging tools. ASTM standard sand/rubber wheel abrasion and pin-on-disk tests are not able to simulate wear characteristics of the complex shape of the tillage tools. Even though the tribology of tillage tools can be realistic from field tests, tillage wear tests under field conditions are expensive and often challenging to generate repeatable engineeri