The research addressed the formal functions resulting from the use of various guiding signs in the design of the interior spaces of airports in various pragmatic, expressive and psychological aspects. The aim is to identify the functions the guiding signs perform in facilitating and organizing the travelers' movement and satisfying the needs of the visitors and users of the unfamiliar places which they intend to visit, the nature of the services offered by these signs as one of the important parts within their general design. The research also identified the concept and types of signs as a means of visual communication and how to employ them in the design of the airports public spaces, and what are the criteria of their use and functions that they achieve as one of the elements of the space and the user's surrounding environment to satisfy the design purposes for which they were designed both functionally and aesthetically. The researcher arrived at a set of results the most important of which are as follows: The guiding signs do not achieve their design function unless they have formal elements that have comprehensible, easy, and clear expressions through which they can achieve intellectual and cognitive response by the recipient by a visual message in the form of a symbolic and expressive language in order to signify certain information conveyed by the forms, shapes, and colors intended to be recognized by the recipient in order to assist him in understanding the space and the process of facilitating his movement and various activities in the least possible time.
In order for the guiding sign to achieve its functional goals as a successful design product, there should be certain criteria put by the designer in the space that surrounds the sign, for instance, choosing the suitable location, the nature of the lights used, and the processed raw material, in addition to the suitability of the design and its various elements which constitute the only way in order for the guiding signs to achieve their functions in three aspects, i.e. utilization, symbolic expression and the desired sensory and aesthetic aspects.
Abstract: This study aims to investigate the backscattering electron coefficient for SixGe1-x/Si heterostructure sample as a function of primary electron beam energy (0.25-20 keV) and Ge concentration in the alloy. The results obtained have several characteristics that are as follows: the first one is that the intensity of the backscattered signal above the alloy is mainly related to the average atomic number of the SixGe1-x alloy. The second feature is that the backscattering electron coefficient line scan shows a constant value above each layer at low primary electron energies below 5 keV. However, at 5 keV and above, a peak and a dip appeared on the line scan above Si-Ge alloy and Si, respectively, close to the interfacing line
... Show MoreA low speed open circuit wind tunnel has been designed, manufactured and constructed at the
Mechanical Engineering Department at Baghdad University - College of Engineering. The work is one of
the pioneer projects adapted by the R & D Office at the Iraqi MOHESR. The present paper describes the
first part of the work; that is the design calculations, simulation and construction. It will be followed by a
second part that describes testing and calibration of the tunnel. The proposed wind tunnel has a test
section with cross sectional area of (0.7 x 0.7 m2) and length of (1.5 m). The maximum speed is about (70
m/s) with empty test section. The contraction ratio is (8.16). Three screens are used to minimize flow
distu
This work aims to detect the associations of C-peptide and the homeostasis model assessment of beta-cells function (HOMA2-B%) with inflammatory biomarkers in pregnant-women in comparison with non-pregnant women. Sera of 28 normal pregnant women at late pregnancy versus 27 matched age non-pregnant women (control), were used to estimate C-peptide, triiodothyronine (T3), and thyroxin (T4) by Enzyme-linked-immunosorbent assay (ELISA), fasting blood sugar (FBS) by automatic analyzer Biolis 24i, hematology-tests by hematology analyzer and the calculation of HOMA2-B% and homeostasis model assessment of insulin sensitivity (HOMA2-S%) by using C-peptide values instead of insulin. The comparisons, correlations, regression analysis tests were perfo
... Show MoreDue to the continuous development in society and the multiplicity of customers' desires and their keeping pace with this development and their search for the quality and durability of the commodity that provides them with the best performance and that meets their needs and desires, all this has led to the consideration of quality as one of the competitive advantages that many industrial companies compete for and which are of interest to customers and are looking for. The research problem showed that the Diyala State Company for Electrical Industries relies on some simple methods and personal experience to monitor the quality of products and does not adopt scientific methods and modern programs. The aim of this research is to desi
... Show MoreFuture wireless systems aim to provide higher transmission data rates, improved spectral efficiency and greater capacity. In this paper a spectral efficient two dimensional (2-D) parallel code division multiple access (CDMA) system is proposed for generating and transmitting (2-D CDMA) symbols through 2-D Inter-Symbol Interference (ISI) channel to increase the transmission speed. The 3D-Hadamard matrix is used to generate the 2-D spreading codes required to spread the two-dimensional data for each user row wise and column wise. The quadrature amplitude modulation (QAM) is used as a data mapping technique due to the increased spectral efficiency offered. The new structure simulated using MATLAB and a comparison of performance for ser
... Show MoreA computerized investigation has been carried out on the design of six electrodes electrostatic lenses used in electron gun application. The Finite-Element Method (FEM) was used in the solution of Laplace equation for determine the axial potential distribution. The electron trajectory under zero magnification condition. The optical properties, spherical and chromatic aberrations, the object and image focal length and object and image position are calculated. A very good futures for the electron gun with these lenses have been computed where are a beam current of 8.7*10-7A can be supplied using cathode tip of radius 10nm.
Abstract
A two electrode immersion electrostatic lens used in the design
of an electron gun, with small aberration, has been designed using
the finite element method (FEM). By choosing the appropriate
geometrical shape of there electrodes the potential V(r,z) and the
axial potential distribution have been computed using the FEM to
solve Laplace's equation.
The trajectory of the electron beam and the optical properties of
this lens combination of electrodes have been computed under
different magnification conditions (Zero and infinite magnification
conditions) from studying the properties of the designed electron
gun can be supplied with Abeam current of 5.7*10-6 A , electron
gun with half acceptance