In our world, technological development has become inherent in all walks of life and is characterized by its speed in performance and uses. This development required the emergence of new technologies that represent a future revolution for a fourth industrial revolution in various fields, which contributed to finding many alternatives and innovative technical solutions that shortened time and space in terms of making Machines are smarter, more accurate, and faster in accomplishing the tasks intended for them, and we find the emergence of what is called artificial intelligence (artificial intelligence), which is the technology of the future, which is one of the most important outputs of the fourth industrial revolution, and artificial intelligence has become a comprehensive term for applications that perform complex tasks that required in the past human inputs such as Communicating with customers via the Internet and various digital applications, as it saved a lot of time, effort, and money thanks to its various capabilities, specifically in the field of graphic design. in graphic design The study aimed to identify the effectiveness of artificial intelligence in contemporary digital graphic design and to benefit from its applications through its employment in the field of graphic design. And the techniques used to design and develop artificial intelligence applications 4- The importance of artificial intelligence and its effectiveness in developing graphic design skills. Its effective capabilities enable and facilitate contemporary digital graphic design processes. The research also came out with conclusions, recommendations and proposals that came from it. Results: 1- Artificial intelligence for the graphic designer shortens the implementation of various designs and analyzes problems with accuracy and high speed, which allows achieving creativity and developing his skills. 2- Artificial intelligence can process a huge amount of data and information in a short period of time compared to time spent on traditional digital design. 3- Artificial intelligence enables the graphic designer to find solutions to unfamiliar problems that he faces when executing the design work. The researcher came out with conclusions, including: 1 - The revolution in the world of artificial intelligence in the future will make applications capable of carrying out various tasks of graphic design and most areas of our lives. 2- Artificial intelligence helps users create new patterns and different designs with less experience and knowledge in the field of design. The researcher also recommended directing graphic designers and students to work and make use of artificial intelligence techniques in the various stages of design to save time and effort and avoid making mistakes. The researcher also suggested studying the applications of artificial intelligence and their uses in the digital graphic achievement. The search was also included in the list of Arab and foreign sources
Hydrate dissociation equilibrium conditions for carbon dioxide + methane with water, nitrogen + methane with water and carbon dioxide + nitrogen with water were measured using cryogenic sapphire cell. Measurements were performed in the temperature range of 275.75 K–293.95 K and for pressures ranging from 5 MPa to 25 MPa. The resulting data indicate that as the carbon dioxide concentration is increased in the gas mixture, the gas hydrate equilibrium temperature increases. In contrast, by increasing the nitrogen concentration in the gas mixtures containing methane or carbon dioxide decreased the gas hydrate equilibrium temperatures. Furthermore, the cage occupancies for the carbon dioxide + methane system were evaluated using the Van der Wa
... Show MoreThe aim of the current study was to develop a nanostructured double-layer for hydrophobic molecules delivery system. The developed double-layer consisted of polyethylene glycol-based polymeric (PEG) followed by gelatin sub coating of the core hydrophobic molecules containing sodium citrate. The polymeric composition ratio of PEG and the amount of the sub coating gelatin were optimized using the two-level fractional method. The nanoparticles were characterized using AFM and FT-IR techniques. The size of these nano capsules was in the range of 39-76 nm depending on drug loading concentration. The drug was effectively loaded into PEG-Gelatin nanoparticles (≈47%). The hydrophobic molecules-release characteristics in terms of controlled-releas
... Show MoreAdvanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m
... Show MoreBackground: The world is in front of two emerging problems being scarceness of virgin re-sources for bioactive materials and the gathering of waste production. Employment of the surplus waste in the mainstream production can resolve these problems. The current study aimed to prepare and characterize a natural composite CaO-SiO2 based bioactive material derived from naturally sustained raw materials. Then deposit this innovative novel bioactive coating composite materials overlying Yttria-stabilized tetragonal zirconia substrate. Mate-rials and method; Hen eggshell-derived calcium carbonate and rice husk-derived silica were extracted from natural resources to prepare the composite coating material. The manufac-tured powder was characterized
... Show MoreA phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu
... Show MoreActivated carbon derived from Ficus Binjamina agro-waste synthesized by pyro carbonic acid microwave method and treated with silicon oxide (SiO2) was used to enhance the adsorption capability of the malachite green (MG) dye. Three factors of concentration of dye, time of mixing, and the amount of activated carbon with four levels were used to investigate their effect on the MG removal efficiency. The results show that 0.4 g/L dosage, 80 mg/L dye concentration, and 40 min adsorption duration were found as an optimum conditions for 99.13% removal efficiency. The results also reveal that Freundlich isotherm and the pseudo-second-order kinetic models were the best models to describe the equilibrium adsorption data.
Date palm silver nanoparticles are a green synthesis method used as antibacterial agents. Today,
there is a considerable interest in it because it is safe, nontoxic, low costly and ecofriendly. Biofilm bacteria
existing in marketed local milk is at highly risk on population health and may be life-threatening as most
biofilm-forming bacteria are multidrug resistance. The goal of current study is to eradicate biofilm-forming
bacteria by alternative treatment green synthesis silver nanoparticles. The biofilm formation by bacterial
isolates was detected by Congo red method. The silver nanoparticles were prepared from date palm
(khestawy) fruit extract. The formed nanoparticles were characterized with UV-Vis
Apple slice grading is useful in post-harvest operations for sorting, grading, packaging, labeling, processing, storage, transportation, and meeting market demand and consumer preferences. Proper grading of apple slices can help ensure the quality, safety, and marketability of the final products, contributing to the post-harvest operations of the overall success of the apple industry. The article aims to create a convolutional neural network (CNN) model to classify images of apple slices after immersing them in atmospheric plasma at two different pressures (1 and 5 atm) and two different immersion times (3 and again 6 min) once and in filtered water based on the hardness of the slices usin