Each era has advantages in terms of innovation and development in form, technology, style, and design in ceramic vessels, both at the level of functional and aesthetic performance, so this study aimed to demonstrate the importance of geometrical foundations in the design structure of contemporary ceramic vessels, and also to reveal the constructive skills in The structure of the ceramic figure.
The researchers used the descriptive analytical approach to suit the nature of the study, and they described and analyzed the ceramic works in terms of geometric shape systems, elements and foundations of design in construction, formal diversity in the general design of ceramic vessels, and references and sources of artwork. In addition to the above, the researchers reached a set of results one of the important:
The diversity in the structural design of the geometric form confirmed the distance from inertia by emphasizing the linear and expressive values, which contributed to the enrichment of the ceramic vessels. And the interest in monochrome in the geometric design of the earthenware, which enhanced the formal expression and unity in the structural design. The emphasis is on two-part geometric shapes, emphasizing mass and emptiness, and the balance between interior and exterior spaces. And also the distance from the traditional style, through geometrical modification and formation, and the creation of contemporary ceramic shapes through the plurality of ceramic pieces in one structural composition and their translation in the language of shapes in the final achievement of contemporary ceramic vessels, And focus on the phenomenon of structural reflection in the contemporary design of the form
This study aims to encapsulate atenolol within floating alginate-ethylcellulose beads as an oral controlled-release delivery system using aqueous colloidal polymer dispersion (ACPD) method.To optimize drug entrapment efficiency and dissolution behavior of the prepared beads, different parameters of drug: polymer ratio, polymer mixture ratio, and gelling agent concentration were involved.The prepared beads were investigated with respect to their buoyancy, encapsulation efficiency, and dissolution behavior in the media: 0.1 N HCl (pH 1.2), acetate buffer (pH 4.6) and phosphate buffer (pH 6.8). The release kinetics and mechanism of the drug from the prepared beads was investigated.All prepared atenolol beads remained f
... Show MoreIncreasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off perm
... Show MoreIn 2010, Long and Zeng introduced a new generalization of the Bernstein polynomials that depends on a parameter and called -Bernstein polynomials. After that, in 2018, Lain and Zhou studied the uniform convergence for these -polynomials and obtained a Voronovaskaja-type asymptotic formula in ordinary approximation. This paper studies the convergence theorem and gives two Voronovaskaja-type asymptotic formulas of the sequence of -Bernstein polynomials in both ordinary and simultaneous approximations. For this purpose, we discuss the possibility of finding the recurrence relations of the -th order moment for these polynomials and evaluate the values of -Bernstein for the functions , is a non-negative integer
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreThe researchers wanted to make a new azo imidazole as a follow-up to their previous work. The ligand 4-[(2-Amino-4-phenylazo)-methyl]-cyclohexane carboxylic acid as a derivative of trans-4-(aminomethyl) cyclohexane carboxylic acid diazonium salt, and synthesis a series of its chelate complexes with metalions, characterized these compounds using a variety technique, including elemental analysis, FTIR, LC-Mass, 1H-NMRand UV-Vis spectral process as well TGA, conductivity and magnetic quantifications. Analytical data showed that the Co (II) complex out to 1:1 metal-ligand ratio with square planner and tetrahedral geometry, respectively while 1:2 metal-ligand ratio in the Cu(II), Cr(III), Mn(II), Zn(II), Ru(III)and Rh(III)complexes
... Show MoreSchiff bases, named after Hugo Schiff, are aldehyde- or ketone-like compounds in which the carbonyl group is replaced by imine or azomethine group. They are widely used for industrial purposes and also have a broad range of applications as antioxidants. An overview of antioxidant applications of Schiff bases and their complexes is discussed in this review. A brief history of the synthesis and reactivity of Schiff bases and their complexes is presented. Factors of antioxidants are illustrated and discussed. Copyright © 2016 John Wiley & Sons, Ltd.
It is proposed and studied a prey-predator system with a Holling type II functional response that merges predation fear with a predator-dependent prey's refuge. Understanding the impact of fear and refuge on the system's dynamic behavior is one of the objectives. All conceivable steady-states are investigated for their stability. The persistence condition of the system has been established. Local bifurcation analysis is performed in the Sotomayor sense. Extensive numerical simulation with varied parameters was used to explore the system's global dynamics. A limit cycle and a point attractor are the two types of attractors in the system. It's also interesting to note that the system exhibits bi-stability between these 2 types of attractors.
... Show MoreThe synthesis of nanoparticles (GNPs) from the reduction of HAuCl4 .3H2O by aluminum metal was obtained in aqueous solution with the use of Arabic gum as a stabilizing agent. The GNPs were characterized by TEM, AFM and Zeta potential spectroscopy. The reduction process was monitored over time by measuring ultraviolet spectra at a range of λ 520-525 nm. Also the color changes from yellow to ruby red, shape and size of GNP was studied by TEM. Shape was spherical and the size of particles was (12-17.5) nm. The best results were obtained at pH 6.
Micro-perforated panel (MPP) absorber is increasingly gaining popularity as an alternative sound absorber in buildings compared to the well-known synthetic porous materials. A single MPP has a typical feature of a Helmholtz resonator with a high amplitude of absorption but a narrow absorption frequency bandwidth. To improve the bandwidth, a single MPP can be cascaded with another single MPP to form a double-layer MPP. This paper proposes the introduction of inhomogeneous perforation in the double-layer MPP system (DL-iMPP) to enhance the absorption bandwidth of a double-layer MPP. Mathematical models are proposed using the equivalent electrical circuit model and are validated with experiments with good agreement. It is revealed that the DL-
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show More