A frequently used approach for denoising is the shrinkage of coefficients of the noisy signal representation in a transform domain. This paper proposes an algorithm based on hybrid transform (stationary wavelet transform proceeding by slantlet transform); The slantlet transform is applied to the approximation subband of the stationary wavelet transform. BlockShrink thresholding technique is applied to the hybrid transform coefficients. This technique can decide the optimal block size and thresholding for every wavelet subband by risk estimate (SURE). The proposed algorithm was executed by using MATLAB R2010aminimizing Stein’s unbiased with natural images contaminated by white Gaussian noise. Numerical results show that our algorithm competes favorably with SWT, and SLT based algorithms, and obtain up to 1.23 dB PSNR improvement.
The demand for single photon sources in quantum key distribution (QKD) systems has necessitated the use of weak coherent pulses (WCPs) characterized by a Poissonian distribution. Ensuring security against eavesdropping attacks requires keeping the mean photon number (µ) small and known to legitimate partners. However, accurately determining µ poses challenges due to discrepancies between theoretical calculations and practical implementation. This paper introduces two experiments. The first experiment involves theoretical calculations of µ using several filters to generate the WCPs. The second experiment utilizes a variable attenuator to generate the WCPs, and the value of µ was estimated from the photons detected by the BB
... Show MoreWireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show MoreThe novel groups of organic chromophores containing triphenylamine (TPA) (ATP-I to ATP-IV) have been constructed by structural modification of electron donors with substitution biphenyl and bipyridine rings inserting a π-linkage. Density functional theory (DFT) and time-dependent type of it (TD-DFT) have been operated to study results of donating ability of TPA and spacer on absorption, geometrical, photovoltaic, and energetic attributes of these sensitizers. Structural attributes have been revealed that incorporation of TPA, acceptor and π bridge include a perfect coplanar conformation in TPA-III. Based on frequency computations and ground-state optimization, bandgap (Eg) energy, ELUMO, EHOMO have been determined. For enlightening maximu
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreArtificial fish swarm algorithm (AFSA) is one of the critical swarm intelligent algorithms. In this
paper, the authors decide to enhance AFSA via diversity operators (AFSA-DO). The diversity operators will
be producing more diverse solutions for AFSA to obtain reasonable resolutions. AFSA-DO has been used to
solve flexible job shop scheduling problems (FJSSP). However, the FJSSP is a significant problem in the
domain of optimization and operation research. Several research papers dealt with methods of solving this
issue, including forms of intelligence of the swarms. In this paper, a set of FJSSP target samples are tested
employing the improved algorithm to confirm its effectiveness and evaluate its ex