NeighShrink is an efficient image denoising algorithm based on the discrete wavelet
transform (DWT). Its disadvantage is to use a suboptimal universal threshold and identical
neighbouring window size in all wavelet subbands. Dengwen and Wengang proposed an
improved method, which can determine an optimal threshold and neighbouring window size
for every subband by the Stein’s unbiased risk estimate (SURE). Its denoising performance is
considerably superior to NeighShrink and also outperforms SURE-LET, which is an up-todate
denoising algorithm based on the SURE. In this paper different wavelet transform
families are used with this improved method, the results show that Haar wavelet has the
lowest performance among other wavelet functions. The system was implemented using
MATLAB R2010a. The average improvement in term of PSNR between Haar and other
wavelet functions is 1.37dB
Recognizing cars is a highly difficult task due to the wide variety in the appearance of cars from the same car manufacturer. Therefore, the car logo is the most prominent indicator of the car manufacturer. The captured logo image suffers from several problems, such as a complex background, differences in size and shape, the appearance of noise, and lighting circumstances. To solve these problems, this paper presents an effective technique for extracting and recognizing a logo that identifies a car. Our proposed method includes four stages: First, we apply the k-medoids clustering method to extract the logo and remove the background and noise. Secondly, the logo image is converted to grayscale and also converted to a binary imag
... Show MoreThis study aimed to determine the optimal conditions for extracting basil seed gum in addition to determine the chemical components of basil seeds. Additionally, the study aimed to investigate the effect of the mixing ratio of gum to ethanol when deposited on the basis of the gum yield which was1:1, 1:2, 1:3 (v/v) respectively. The best mixing ratio was one size of gum to two sizes of ethanol, which recorded the highest yield. Based on the earlier, the optimal conditions for extracting basil seed gum in different levels which included pH, temperature, mixing ratio seeds: water and the soaking duration were studied. The optimal conditions were: pH 8, temperature of 60°C, mixing ratio seeds: water 1:65 (w/v) and soaking duration of 30 min
... Show MoreA new algorithm is proposed to compress speech signals using wavelet transform and linear predictive coding. Signal compression based on the concept of selecting a small number of approximation coefficients after they are compressed by the wavelet decomposition (Haar and db4) at a suitable chosen level and ignored details coefficients, and then approximation coefficients are windowed by a rectangular window and fed to the linear predictor. Levinson Durbin algorithm is used to compute LP coefficients, reflection coefficients and predictor error. The compress files contain LP coefficients and previous sample. These files are very small in size compared to the size of the original signals. Compression ratio is calculated from the size of th
... Show MoreThe differential protection of power transformers appears to be more difficult than any type of protection for any other part or element in a power system. Such difficulties arise from the existence of the magnetizing inrush phenomenon. Therefore, it is necessary to recognize between inrush current and the current arise from internal faults. In this paper, two approaches based on wavelet packet transform (WPT) and S-transform (ST) are applied to recognize different types of currents following in the transformer. In WPT approach, the selection of optimal mother wavelet and the optimal number of resolution is carried out using minimum description length (MDL) criteria before taking the decision for the extraction features from the WPT tree
... Show MoreThis paper introduces method of image enhancement using the combination of both wavelet and Multiwavelet transformation. New technique is proposed for image enhancement using one smoothing filter.
A critically- Sampled Scheme of preprocessing method is used for computing the Multiwavelet.It is the 2nd norm approximation used to speed the procedures needed for such computation.
An improvement was achieved with the proposed method in comparison with the conventional method.
The performance of this technique has been done by computer using Visual Baisec.6 package.
FG Mohammed, HM Al-Dabbas, Science International, 2018 - Cited by 2
Bootstrap is one of an important re-sampling technique which has given the attention of researches recently. The presence of outliers in the original data set may cause serious problem to the classical bootstrap when the percentage of outliers are higher than the original one. Many methods are proposed to overcome this problem such Dynamic Robust Bootstrap for LTS (DRBLTS) and Weighted Bootstrap with Probability (WBP). This paper try to show the accuracy of parameters estimation by comparison the results of both methods. The bias , MSE and RMSE are considered. The criterion of the accuracy is based on the RMSE value since the method that provide us RMSE value smaller than other is con
... Show MoreJudicial jurisprudence is one of the important legal solutions to address the shortcomings of legislation. Throughout its long history, human societies have known many cases in which the judge finds himself facing a legislative vacuum in addition to civil legal texts that are difficult for the judge to implement due to ambiguity or contradiction, which requires diligence. To rule on resolving disputes before him in order not to deny justice, but the judge in his jurisprudence was not absolute, but rather bound by certain controls represented by observing the wisdom of legislation on the one hand and taking into account the nature of the texts on the other side, and from here this research came to shed light on the juri
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreIn the current research work, a system of hiding a text in a digital grayscale image has been presented. The algorithm system that had been used was adopted two transforms Integer Wavelet transform and Discrete Cosine transformed. Huffman's code has been used to encoding the text before the embedding it in the cover image in the HL sub band. Peak Signal to Noise Ratio (PSNR) was used to measure the effect of embedding text in the watermarked image; also correlation coefficient has been used to measure the ratio of the recovered text after applying an attack on the watermarked image and we get a good result. The implementation of our proposed Algorithm is realized using MATLAB version 2010a.