Colors are universal, and throughout the ages, they have been associated with
various religious, social and spiritual meanings. They symbolize a galaxy of things
to designate certain ideas or symbols that are sometimes contradictory.
The present study is an attempt to investigate colors, their meanings and
symbolism, and the approaches to translating color idioms from English into
Arabic. It fathoms one of the thorny areas for translation theorists let alone
practitioners. Various definitions, classifications of types and symbolism across
cultures are provided. After reviewing idioms and methods of translating them, a
survey of 114 sentences that include color idioms was conducted to see which
method is mostly adopted by professionals. The survey has revealed that, among
the methods available for the translator, the most common strategy in translating
color idioms from English into Arabic is paraphrase, followed by loan translation.
In addition, the equivalent effect principle sought by Nida (1964) would not be
achieved and the color element found in the source language is lost in translation,
simply because it has neither linguistic nor cultural correspondent equivalent in the
target language.
Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show MoreThe successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show MoreIn the present study a new synthesis method has been introduced for the decoration of platinum(Pt) on the functionalized graphene nanoplatelet (GNP) and also highlighted the preparation method of nanofluids. GNP–Pt uniform nanocomposite was produced from a simple chemical reaction procedure, which included acid treatment for functionalization of GNP. The surface characterization was performed by various techniques such as XRD, FESEMand TEM. The effective thermal conductivity, density, viscosity, specific heat capacity and stability of functionalized GNP–Pt water based nanofluids were investigated in different instruments. The GNP–Pt hybrid nanofluids were prepared by dispersing the nanocomposite in base fluid without adding any surfac
... Show MoreThis research delves into the realm of asphalt technology, exploring the potential of nano-additives to enhance traditional asphalt binder properties. Focusing on Nano-Titanium Dioxide (NT), Nano-Aluminum Oxide (NA), and Nano-Silica Oxide (NS), this study investigates the effects of incorporating these nanomaterials at varying dosages, ranging from 0% to 8%, on the asphalt binder’s performance. This study employs a series of experimental tests, including consistency, storage stability, rotational viscosity, mass loss due to aging, and rheological properties, to assess the impact of nano-additives on asphalt binder characteristics. The findings indicate a substantial improvement in the consistency of the asphalt binder with the add
... Show MoreThis study was conducted to explore the effects of using ionized water on the productive and physiological performance of Japanese quails (Coturnix japonica). Our study was conducted at a private farm from 20th April, 2016 to 13th July, 2016 (84 d). One hundred 42-day-old Japanese quail chicks were used, divided randomly into 5 groups with 4 replicates. Treatments consisted in a control group (T1 - normal water:), alkaline (T2 - pH 8 and T3 - pH 9), and acidic water (T4 - pH 6 and T5 - pH 5). All birds were fed a balanced diet of energy and protein. The egg production ratio, egg weight, cumulative number of eggs, egg mass, feed conversion ratio, productivity per hen per week, and effects on plasma lipids, uric acid, glucose, calcium, and ph
... Show MoreIt is suitable to use precast steel-concrete composite beams to quickly assemble a bridge or a building, particularly in isolated regions where cast-in-situ concrete is not a practical option. If steel-concrete composite beams are designed to allow demountability, they can also be extremely useful in the aftermath of natural disasters, such as earthquakes or flooding, to replace damaged infrastructure. Furthermore, rapid replacement of slabs is extremely beneficial in case of severe deterioration due to long-term stressors such as fatigue or corrosion. The only way to rapidly assemble and disassemble a steel-concrete composite structure is to use demountable shear connectors to connect/disconnect the steel beams to/from the concrete slab. I
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show More