The speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. Twenty three Arabic words were recorded fifteen different times in a studio
by one speaker to form a database. The performance of the proposed system using this
database has been evaluated by computer simulation using MATLAB package. The result
shows recognition accuracy of 65%, 70% and 80% using DWT (Db1), DWT (Db4) and SLT
respectively.
A comprehensive review focuses on 3D network-on-chip (NoC) simulators and plugins while paying attention to the 2D simulators as the baseline is presented. Discussions include the programming languages, installation configuration, platforms and operating systems for the respective simulators. In addition, the simulator’s properties and plugins for design metrics evaluations are addressed. This review is intended for the early career researchers starting in 3D NoC, offering selection guidelines on the right tools for the targeted NoC architecture, design, and requirements.
The proliferation of cellular network enabled users through various positioning tools to track locations, location information is being continuously captured from mobile phones, created a prototype that enables detected location based on using the two invariant models for Global Systems for Mobile (GSM) and Universal Mobile Telecommunications System (UMTS). The smartphone application on an Android platform applies the location sensing run as a background process and the localization method is based on cell phones. The proposed application is associated with remote server and used to track a smartphone without permissions and internet. Mobile stored data location information in the database (SQLite), then transfer it into location AP
... Show MoreThis paper presents the theoretical and experimental results of drilling high density
polyethylene sheet with thickness of 1 mm using millisecond Nd:YAG pulsed laser. Effects of laser
parameters including laser energy, pulse duration and peak power were investigated. To describe and
understand the mechanism of the drilling process Comsol multiphysics package version 4.3b was used to
simulate the process. Both of the computational and experimental results indicated that the drilling
process has been carried out successfully and there are two phases introduced in the drilling process,
vaporization and melting. Each portion of these phases depend on the laser parameters used in the
drilling process
The microstructure and wear properties of 392 Al alloy with different Mg contents were studied using centrifugal casting. All melted alloys were heated to 800 ºC and poured into the preheated centrifugal casting mold (200-250 ºC) at different mould rotational speeds (1500, 1900 and 2300 r.p.m). It is clear from the results obtained that wear rate was dependent on the Mg content, applied load and mould rotational speed. Furthermore, wear test showed that the minimum wear rate was found in the inner layer of produced rings at mould rotational speed of 1900 r.p.m and Mg content of 5%.
In this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A
... Show MoreThis study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity.
Four bacterial strains were isolated from diesel contaminated soil samples. The isolates were identified by the Vitek 2 system, as Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae. The potential of biological surfactant production was tested using the Sigma 703D stand-alone tensiometer showed
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023
Recent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T
... Show MoreThis study proposed a biometric-based digital signature scheme proposed for facial recognition. The scheme is designed and built to verify the person’s identity during a registration process and retrieve their public and private keys stored in the database. The RSA algorithm has been used as asymmetric encryption method to encrypt hashes generated for digital documents. It uses the hash function (SHA-256) to generate digital signatures. In this study, local binary patterns histograms (LBPH) were used for facial recognition. The facial recognition method was evaluated on ORL faces retrieved from the database of Cambridge University. From the analysis, the LBPH algorithm achieved 97.5% accuracy; the real-time testing was done on thirty subj
... Show More