The speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. Twenty three Arabic words were recorded fifteen different times in a studio
by one speaker to form a database. The performance of the proposed system using this
database has been evaluated by computer simulation using MATLAB package. The result
shows recognition accuracy of 65%, 70% and 80% using DWT (Db1), DWT (Db4) and SLT
respectively.
Numeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential a
... Show MoreIn pre- Islamic poetry, there are a lot of words that indicate
peacefulness of one sort of another, in addition to the inspirations of semantic
modeling in which the poet sets himself in various horizons.
Among these words: brother, comrade, friend, companion, lover,
people, prince, home, land, country, blessing, honesty, contract, company,
justice, thankfulness, forgiveness, pardoning, guest, goodness, faithfulness,
silence, death, peace,….
In addition, there are their derivatives from various aspects that indicate
peacefulness either directly or indirectly.
Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l
... Show MoreThe research problem arose from the researchers’ sense of the importance of Digital Intelligence (DI), as it is a basic requirement to help students engage in the digital world and be disciplined in using technology and digital techniques, as students’ ideas are sufficiently susceptible to influence at this stage in light of modern technology. The research aims to determine the level of DI among university students using Artificial Intelligence (AI) techniques. To verify this, the researchers built a measure of DI. The measure in its final form consisted of (24) items distributed among (8) main skills, and the validity and reliability of the tool were confirmed. It was applied to a sample of 139 male and female students who were chosen
... Show MoreThe manual classification of oranges according to their ripeness or flavor takes a long time; furthermore, the classification of ripeness or sweetness by the intensity of the fruit’s color is not uniform between fruit varieties. Sweetness and color are important factors in evaluating the fruits, the fruit’s color may affect the perception of its sweetness. This article aims to study the possibility of predicting the sweetness of orange fruits based on artificial intelligence technology by studying the relationship between the RGB values of orange fruits and the sweetness of those fruits by using the Orange data mining tool. The experiment has applied machine learning algorithms to an orange fruit image dataset and performed a co
... Show MoreThe approach of the research is to simulate residual chlorine decay through potable water distribution networks of Gukookcity. EPANET software was used for estimating and predicting chlorine concentration at different water network points . Data requiredas program inputs (pipe properties) were taken from the Baghdad Municipality, factors that affect residual chlorine concentrationincluding (pH ,Temperature, pressure ,flow rate) were measured .Twenty five samples were tested from November 2016 to July 2017.The residual chlorine values varied between ( 0.2-2mg/L) , and pH values varied between (7.6 -8.2) and the pressure was very weak inthis region. Statistical analyses were used to evaluated errors. The calculated concentrations by the calib
... Show MoreThis investigation proposed an identification system of offline signature by utilizing rotation compensation depending on the features that were saved in the database. The proposed system contains five principle stages, they are: (1) data acquisition, (2) signature data file loading, (3) signature preprocessing, (4) feature extraction, and (5) feature matching. The feature extraction includes determination of the center point coordinates, and the angle for rotation compensation (θ), implementation of rotation compensation, determination of discriminating features and statistical condition. During this work seven essential collections of features are utilized to acquire the characteristics: (i) density (D), (ii) average (A), (iii) s
... Show More