Preferred Language
Articles
/
jcoeduw-479
Classification of Rural Road Network in Al-Najaf Governorate
...Show More Authors

This study has dealt with, the issue of classification of rural road network , in addition to prepare a suggested for the classification for this network in Iraq , this classification account , the specifications and characteristics of rural roads, population, and the range taking of settlements , then this classification was applied on the rural road network in the Najaf province there are four categories of classification ,the first is major arterial rural roads divided into two major arterial and minor arterial roads , while the second category collected roads which was divided into minor arterial roads and main collected roads. The third category was represented by Local Roads , it has been divided into paved roads and unpaved, the fourth category was represented by special roads that lead certain service.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Feb 06 2013
Journal Name
Eng. & Tech. Journal
A proposal to detect computer worms (malicious codes) using data mining classification algorithms
...Show More Authors

Malicious software (malware) performs a malicious function that compromising a computer system’s security. Many methods have been developed to improve the security of the computer system resources, among them the use of firewall, encryption, and Intrusion Detection System (IDS). IDS can detect newly unrecognized attack attempt and raising an early alarm to inform the system about this suspicious intrusion attempt. This paper proposed a hybrid IDS for detection intrusion, especially malware, with considering network packet and host features. The hybrid IDS designed using Data Mining (DM) classification methods that for its ability to detect new, previously unseen intrusions accurately and automatically. It uses both anomaly and misuse dete

... Show More
Publication Date
Thu Sep 01 2016
Journal Name
2016 8th Computer Science And Electronic Engineering (ceec)
Class-specific pre-trained sparse autoencoders for learning effective features for document classification
...Show More Authors

View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Tue Sep 10 2019
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
A classification model on tumor cancer disease based mutual information and firefly algorithm
...Show More Authors

View Publication
Scopus (15)
Crossref (6)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Sat Jul 06 2024
Journal Name
Multimedia Tools And Applications
Text classification based on optimization feature selection methods: a review and future directions
...Show More Authors

A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (3)
Scopus Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Iop Conference Series: Earth And Environmental Science
Effect of Irrigation Systems, Bio-Fertilizers and Polymers on some Growth Characteristics and Potato Production in Desert Soils, Karbala Governorate
...Show More Authors

Two field experiments were conducted during the spring season 2020 in Karbala governorate to study the effect of irrigation systems, irrigation intervals, biofertilizers and polymers on some characteristics of vegetative growth and potato production. The results showed that there were significant differences in the values of the average plant height due to the effect of the double interference between the irrigation system and the improvers, The height of potato plant under any irrigation system was superior when adding conditioners compared to the control treatment, as it reached 48.56, 58.00 and 64.33cm when adding polymer, biofertilizer, and polymers+ biofertilizers, respectively compared with the control treatment of 44.64cm in the surf

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Comparative Analysis of MFO, GWO and GSO for Classification of Covid-19 Chest X-Ray Images
...Show More Authors

Medical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons.

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Fri Jan 15 2021
Journal Name
Journal Of Mechanical Engineering Research And Developments
Comparison of the Effect Using Color Sensor and Pixy2 Camer on the Classification of Pepper Crop
...Show More Authors

Image processing applications are currently spreading rapidly in industrial agriculture. The process of sorting agricultural fruits according to their color comes first among many studies conducted in industrial agriculture. Therefore, it is necessary to conduct a study by developing an agricultural crop separator with a low economic cost, however automatically works to increase the effectiveness and efficiency in sorting agricultural crops. In this study, colored pepper fruits were sorted using a Pixy2 camera on the basis of algorithm image analysis, and by using a TCS3200 color sensor on the basis of analyzing the outer surface of the pepper fruits, thus This separation process is done by specifying the pepper according to the color of it

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Studying the Classification of Texture Images by K-Means of Co-Occurrence Matrix and Confusion Matrix
...Show More Authors

In this research, a group of gray texture images of the Brodatz database was studied by building the features database of the images using the gray level co-occurrence matrix (GLCM), where the distance between the pixels was one unit and for four angles (0, 45, 90, 135). The k-means classifier was used to classify the images into a group of classes, starting from two to eight classes, and for all angles used in the co-occurrence matrix. The distribution of the images on the classes was compared by comparing every two methods (projection of one class onto another where the distribution of images was uneven, with one category being the dominant one. The classification results were studied for all cases using the confusion matrix between ev

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Studying the Classification of Texture Images by K-Means of Co-Occurrence Matrix and Confusion Matrix
...Show More Authors

In this research, a group of gray texture images of the Brodatz database was studied by building the features database of the images using the gray level co-occurrence matrix (GLCM), where the distance between the pixels was one unit and for four angles (0, 45, 90, 135). The k-means classifier was used to classify the images into a group of classes, starting from two to eight classes, and for all angles used in the co-occurrence matrix. The distribution of the images on the classes was compared by comparing every two methods (projection of one class onto another where the distribution of images was uneven, with one category being the dominant one. The classification results were studied for all cases using the confusion matrix between every

... Show More
Preview PDF
Crossref (5)
Crossref