The research addressed an analytical field investigation of the locality of meander, the factors responsible of the locality of the meander at certain points of the stream other than others, and the role sequence of these factors in the formation process.
The research revealed that the location of forming the meander was associated closely with the scale structural composition of the bank materials from which the first stage of forming the curved stream, for the inhomogeneous or non-identical opposite banks in their scale structural composition saw an activity of differential corrosion, while the homogeneous and identical opposite banks in their scale structural composition saw an identical corrosion activity in its intensity at both banks. The research investigated in field the presence of scale variation of the materials of opposite banks in the location of forming the meander which was not found at the incurved stream banks by taking samples and analyze them in scale. The analysis results showed that the synclinal bank was with high sand ratio which was the reason behind the activity of corrosion process due to its weak cohesion, high permeability, and highroughness creating an environment of frequent turmoil reverse eddy currents. As to its opposite bank which represented the convex bank, the results of the scale analysis showed its soil to be with high content of mud; therefore, it was resistant to the corrosion activity compared to the synclinal bank, being more cohesive and of weak permeability, it was soft, so it did not create a turmoil eddy motional environment of the aquatic currents. While in the incurved stream, the results of the scale analysis showed that the soil of both opposite banks were identical in its volume content; therefore, the activity of the corrosion process was identical at both banks and its high sand ratio resulted in the expansion of the stream and not its fold.
The research revealed that the circularity of the curved stream imposed the presence of the centrifugal force which appeared in the domains of the circular motion, changing the concentration locations of the currents. As it is well-known, the fastest currents in the river are those which locate far away from the bottom and the banks, and are found in the middle of the stream which we really found in the incurved stream, but due to the control of the centrifugal force, we found that the fastest currents were concentrated at the synclinal banks and that the slowest currents were concentrated at the synclinal banks, which explains logically and realistically due to the contrast of the corrosion and sediment activity in the curved river streams and the presence of centrifugal force was responsible of the development of these streams from fold to curve to turn to cut lake.
The research defined the morphology of the curved stream at any stage of the development stages at the presence of three corrosion units that represent the synclinal banks meeting three sedimentary units represent the convex banks, two of which were opposite to each other represent overall the neck of the stream and the stream in its complete shape was represented by the overall of these corners
The current research demonstrates the ERI method's effectiveness as a supplementary engineering site investigation approach. Engineering site research is important to indicate the subsoil of proposed production sites. The benefit of the dipole-dipole array for ERI electrical resistivity imaging is that it provides informative records of subsurface geology and condition along with profiles. The dipole-dipole array was performed along with three parallel profiles at the Diyala University site to identify the buried facilities (pipes and cables) in the area. The buried electric cable embedded in a plastic tube was used for simulation to report and verify the field resistivity results. Interpretation of field facts confirmed that
... Show MoreThe temperature control process of electric heating furnace (EHF) systems is a quite difficult and changeable task owing to non-linearity, time delay, time-varying parameters, and the harsh environment of the furnace. In this paper, a robust temperature control scheme for an EHF system is developed using an adaptive active disturbance rejection control (AADRC) technique with a continuous sliding-mode based component. First, a comprehensive dynamic model is established by using convection laws, in which the EHF systems can be characterized as an uncertain second order system. Second, an adaptive extended state observer (AESO) is utilized to estimate the states of the EHF system and total disturbances, in which the observer gains are updated
... Show MoreThe disposal of textile effluents to the surface water bodies represents the critical issue especially these effluents can have negative impacts on such bodies due to the presence of dyes in their composition. Biological remediation methods like constructed wetlands are more cost-effective and environmental friendly technique in comparison with traditional methods. The ability of vertical subsurface flow constructed wetlands units for treating of simulated wastewater polluted with Congo red dye has been studied in this work. The units were packed with waterworks sludge bed that either be unplanted or planted with Phragmites australis and Typha domingensis. The efficacy of present units was evaluated by monitoring of DO, Temperature, COD
... Show MoreHysterothylacium is one of the most important nematode parasites parasitizing fish, and it's the most diverse species nematodes of marine parasites, these species attach to the intestinal wall via their mouth lips adaptation. In the present study, seven out of 56 fish specimens (12.5 %) were found to be infected by the adult worms of Greasy grouper fishes Orangespotted grouper Epinephelus coioides (Forsskål, 1775)from locations of marine coastal water, Arabian Gulf, Iraq. A new recorded of Hysterothylacium spp. collected are morphologically described, genetically and Sccaning Electron Microscope (SEM) images for new systematic observations, on dorsal labium, su
... Show MoreThe simulation of passively Q-switching is four non – linear first order differential equations. The optimization of passively Q-switching simulation was carried out using the constrained Rosenbrock technique. The maximization option in this technique was utilized to the fourth equation as an objective function; the parameters, γa, γc and β as were dealt with as decision variables. A FORTRAN program was written to determine the optimum values of the decision variables through the simulation of the four coupled equations, for ruby laser Q–switched by Dy +2: CaF2.For different Dy +2:CaF2 molecules number, the values of decision variables was predicted using our written program. The relaxation time of Dy +2: CaF2, used with ruby was
... Show More