This research aims at making a comparative survey between the dry season in (2017-2018) and the wet season (2018-2019) in Iraq concerning the variation of rainfall and pressure systems responsible for such a difference. In this paper, seven climatological stations have been selected: Mosul, Kirkuk, Khanaqin, Baghdad, Rutba, Diwaniyah and Basra. Results have shown that the first category of rainfall of the two seasons has recorded a higher number of rainy days in comparison with the second and third categories with a total of 274 day in a dry season and 403 day of a wet season. Further, the total amount of the annual continuous rain is higher than the total of thunderstorms in a dry season as well as in the majority of wet season stations except in Khanaqin, Baghdad. As for the highest daily precipitation, Kirkuk station has recorded 102.9 mm in a dry season, whereas Mosul station has recorded 308.2 in the wet season. It further occupied the highest monthly precipitation; it reached 291 mm in a dry season and 884.3 in a wet season. The study have found that El Nino phenomenon, which represents the negative values, has occurred during December and February while La Nina, which represents the positive values, has occurred during the rest of the year in the dry season. On the other hand, in wet seasons, the negative values (El Nino) continued for seven months while the positive ones (La Nina) continued for two months. Findings of surficial maps analysis have revealed that the highest overall frequencies and continuation have been for the Sudanese depression individually or jointly with the three categories of the dry season. Cold anticyclones and the Sudanese depression (individually or jointly) have recorded the highest frequencies, and continuation for the first category and the latter depression for the second and third categories of the wet season.
The capacity factor is the main factor in assessing the efficiency of wind Turbine. This paper presents a procedure to find the optimal wind turbine for five different locations in Iraq based on finding the highest capacity factor of wind turbine for different locations. The wind data for twelve successive years (2009-2020) of five locations in Iraq are collected and analyzed. The longitudes and latitudes of the candidate sites are (44.3661o E, 33.3152o N), (47.7738o E, 30.5258o N), (45.8160o E, 32.5165o N), (44.33265o E, 32.0107o N) and (46.25691o E, 31.0510o N) for Baghdad, Basrah, Al-Kut, Al-Najaf, and Al-Nasiriyah respectively. The average wind velocity, standard deviation, Weibull shape and scale factors, and probability density functi
... Show MoreUnderstanding how wing geometry and internal structural configuration influence vibration behavior is essential for ensuring the aeroelastic stability and structural integrity of modern aircraft. This study presents a comprehensive numerical investigation of the modal and deflection characteristics of aircraft wings with different geometries (symmetric tapered planform and swept-back) and spar configurations (box and I-section) using the finite element method (FEM) in ANSYS Mechanical APDL R.15. Six NACA airfoil profiles (0024, 2411, 2416, 2424, 4412, and 4421) with angle of attack 9° under 50 m/s speed and 1,100 kg pay load were analyzed under identical aerodynamic and material conditions using linear elasti
... Show MoreIn this work, silver nanoparticles (AgNPs) were biosynthesized from leaves of Ziziphus mauritiana Lam. jujube plant in Iraq and tested against fungal pathogens. Extract of leaves of Z. mauritiana mixed with 10-3 M AgNO3exposed to slight sunlight for 3 days. Characterization of AgNPs was done using UV-visible spectroscopy, SPM (scanning probe microscopy) and atomic force microscopy (AFM). The change of solution color from pale brown to dark brown and the exhibited maximum peak at 445 nm accepted as an indicator to biosynthesized AgNPs. Aqueous extract of Ziziphus mauritiana is considered as biological reduced and stabilized agent for Ag+ to Ag0. AFM showed the formation of irregular shapes of AgNPs. The biosynthesized silver nanoparticles ha
... Show More<p>The current work investigated the combustion efficiency of biodiesel engines under diverse ratios of compression (15.5, 16.5, 17.5, and 18.5) and different biodiesel fuels produced from apricot oil, papaya oil, sunflower oil, and tomato seed oil. The combustion process of the biodiesel fuel inside the engine was simulated utilizing ANSYS Fluent v16 (CFD). On AV1 diesel engines (Kirloskar), numerical simulations were conducted at 1500 rpm. The outcomes of the simulation demonstrated that increasing the compression ratio (CR) led to increased peak temperature and pressures in the combustion chamber, as well as elevated levels of CO<sub>2</sub> and NO mass fractions and decreased CO emission values un
... Show MoreThin films of Nb2O5 have been successfully deposited using the DC reactive magnetron sputtering technique to manufacture NH3 gas sensors. These films have been annealed at a high temperature of 800°C for one hour. The assessment of the Nb2O5 thin films structural, morphological, and electrical characteristics was carried out using several methods such as X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity assessments. The XRD analysis confirms the polycrystalline composition of the Nb2O5 thin films with a hexagonal crystal structure. Furthermore, the sensitivity, response time, and recovery time of the gas sensor were evaluated for the Nb2O5 thin film
... Show MoreIn this work, the spectra for plasma glow produced by pulse
Nd:YAG laser (λ=532 and 1064nm) on Ag:Al alloy with same molar
ratio samples in distilled water were analyzed by studying the atomic
lines compared with aluminum and silver strong standard lines. The
effect of laser energies of the range 300 to 800 mJ on spectral lines,
produced by laser ablation, were investigated using optical
spectroscopy. The electron temperature was found to be increased
from 1.698 to 1.899 eV, while the electron density decreased from
2.247×1015 to 5.08×1014 cm-3 with increasing laser energy from 300
to 800 mJ with wavelength of 1064 nm. The values of electron
temperature using second harmonic frequency are greater than of<