The structure of the interrogation process in cross-examinations is said to be diverse and complex in terms of question-response typology. This is because the counsel has to extract truth from an opposing party’s witness whose views are expected to advocate that party's views regarding the case. Accordingly, the study which is basically quantitative in nature aims to investigate what the examining party intends to obtain out of these questions and which of these questions are the most prevalently used. It also aims to measure the amount of cooperativity in witnesses' responses. Accordingly, three transcripts of cross-examination have been analyzed, using a pragmatically-oriented approach. The approach draws on Stenstorm (1984) and Archer's (2005) classification of questions; Stenstorm (1984) and Archer's (2002) classificatory scheme of responses which is based on the strategies of violating Grice's (1975) maxims to determine the degree of cooperation on the part of respondents. The analysis revealed a diversity in the attorneys' method, making the use of four types of leading questions as well as non-leading ones represented by WH questions. The latter recorded the least percentage in comparison with the overall percentage of leading questions. That is; a preference is shed on the part of cross-examining counsel towards leading over non-leading questions. Moreover, the majority of the responses given have indicated the witnesses' commitment to the purpose and format of the questions posed, showing a high level of cooperativity on the part of those witnesses
Bilinear interpolation and use of perceptual color spaces (HSL, HSV, LAB, and LUV) fusion techniques are presented to improve spatial and spectral characteristics of the multispectral image that has a low resolution to match the high spatial resolution of a panchromatic image for different satellites image data (Orbview-3 and Landsat-7) for the same region. The Signal-to-Noise Ratio (SNR) fidelity criterion for achromatic information has been calculated, as well as the mean color-shifting parameters that computed the ratio of chromatic information loss of the RGB compound inside each pixel to evaluate the quality of the fused images. The results showed the superiority of HSL color space to fuse images over the rest of the spac
... Show MoreA selective and sensitive spectrophotometric extraction method was established and used to estimate antihypertensive drug, losartan potassium. The method is based on the formation of blue ion pair of the anionic drug, losartan, and the cationic dye, methylene blue, at adjusted pH 6.5 in aqueous solutions, followed by quantitative extraction to dichloromethane;.The observed maximum absorbance was at π 654.9 nm. With 4.53321 x 105 M-1 cm-1 molar absorptivity, Beer's law was obeyed within a concentration range of 0.03-1.5 μg / ml. The limit of detection and the limit of quantification were 0.01μg / ml and 0.03μg / ml, respectively. The method's precision was estimated by a relative standard devi
... Show MoreLight isotopes, especially closed shell nuclei, have significance in thermonuclear reactions of the Carbon-Nitrogen-Oxygen (CNO) cycle in stars. In this research, 12C(p, γ) 13N and 14N(p, γ) 15O reactions have been calculated by means of Matlab codes to find the reaction rate across a temperature range of 0.006 to 10 GK using non-resonant parts, as well as the astrophysical S- factor S(E) at low energies. It was concluded that the high binding energy of 12C and 14N nuclei make the reaction less probable thus enabling other competitive processes to develop, which enhances the probability of other competitive proton reactions in the CNO cycle.
The main purpose of this paper, is to characterize new admissible classes of linear operator in terms of seven-parameter Mittag-Leffler function, and discuss sufficient conditions in order to achieve certain third-order differential subordination and superordination results. In addition, some linked sandwich theorems involving these classes had been obtained.
In this work, Co-Y-oxide Nano Structure is successfully synthesized via hydrothermal method. The XRD analysis, SEM analysis, optical, electrical and photo sensing properties have been investigated for Co3O4 and Co-Y-oxide thin films. The X-ray diffraction (XRD) analysis reveals that all films are polycrystalline in nature, having cubic structure. The SEM images of thin films clearly indicates that Co3O4 possesses nanosphere like structure and flower like for Co-Y-oxide. The optical properties show that the optical energy gap follows allowed direct electronic transition calculated using Tauc equation and it increases for Co-Y-oxide. The photo sensing properties of thin films are investigated as a function of time at different wavelengths to
... Show MoreIn this work, chemical spray pyrolysis deposition (CSP) technique was used to prepare a mixed In2O3-CdO thin films with different CdO content (10, 30 and 50)%volume ratio on glass substrates at 150 ᵒC substrate temperature. The surface morphology and structural properties were measured to find the optimum conditions to improve thin films properties for using as photo detector. Current –Time, the sensitivity and response speed vary for each mixture. Samples with 10% vol. CdO content has square pulse response with average rise time nearly 1s and fall time 1s.
The paper discusses the structural and optical properties of In2O3 and In2O3-SnO2 gas sensor thin films were deposited on glass and silicon substrates and grown by irradiation of assistant microwave on seeded layer nucleated using spin coating technique. The X-ray diffraction revealed a polycrystalline nature of the cubic structure. Atomic Force Microscopy (AFM) used for morphology analysis that shown the grain size of the prepared thin film is less than 100 nm, surface roughness and root mean square for In2O3 where increased after loading SnO2, this addition is a challenge in gas sensing application. Sensitivity of In2O3 thin film against NO2 toxic gas is 35% at 300oC. Sensing properties were improved after adding Tin Oxide (SnO2) to be mo
... Show More