This research aims to clarify the concept of doctrinal rules and adjust its basic terminologies. It further aims to lay down a map for the method of rooting this science by mentioning its rooted sources, in addition to drawing a miniature picture of its history, origin, formation and development. The paper ends with practical models to highlight its importance in rooting the science of nodal rules and facilitating the mentioning of its scattered discussions in a short and comprehensive phrase. The study further illustrates the pioneering role of doctrinal rules science in managing the doctrinal disputes, combining multiple sayings, and in bringing together opposing opinions. The study follows the inductive, descriptive and analytical approach. The importance of the research topic lies in the fact that it tackles something that has not yet been widely examined. Thus, researching such a topic is considered a new thing due to the scarcity of what has been written on it, on the one hand. On the other hand, the topic is serious as it talks about the Contractual Rules, which have not gained sufficient research among the applicants. Besides, what has been so far written on the doctrinal rules is related to the chapters of the doctrine and its general discussions; a matter which is similar to Al-Ghazali’s rules of beliefs. No allocation was dedicated to its contractual aspect. Accordingly, the present research is one of the important building blocks of the doctrinal lesson, as it is related to inferencing the science of belief and collecting its dispersed discussions under general rules in an
The presented work includes the Homotopy Transforms of Analysis Method (HTAM). By this method, the approximate solution of nonlinear Navier- Stokes equations of fractional order derivative was obtained. The Caputo's derivative was used in the proposed method. The desired solution was calculated by using the convergent power series to the components. The obtained results are demonstrated by comparison with the results of Adomain decomposition method, Homotopy Analysis method and exact solution, as explained in examples (4.1) and (4.2). The comparison shows that the used method is powerful and efficient.
Electrocoagulation is an electrochemical method for treatment of different types of wastewater whereby sacrificial anodes corrode to release active coagulant (usually aluminium or iron cations) into solution, while simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation or settling. The Taguchi method was applied as an experimental design and to determine the best conditions for chromium (VI) removal from wastewater. Various parameters in a batch stirred tank by iron metal electrodes: pH, initial chromium concentration, current density, distance between electrodes and KCl concentration were investigated, and the results have been analyzed using signal-to-noise (S/N) ratio. It was found that the r
... Show MoreIn the present work, zeolite Y has been synthesized successfully by sol-gel method.Zeolite was synthesized by crystallization of the final gel which consist from seeding and feed stock gels at 85 oC. HY zeolite was prepared by an ion exchange process with ammonium chloride solution and then loaded with different percentages of platinum and titanium by the wet - impregnation method.
X-ray Diffraction (XRD), X-ray Florescence (XRF), Scanning Electron Microscopy (SEM), BET surface area and, Crushing strength were used to characterize the synthesized and prepared catalysts . Results showed high crystallinity 90% with silica to alumina ratio 5 for HY, high surface area of 600 m2/g and pore
... Show MoreIn this paper, the series solution for unsteady flow for an incompressible viscous electrically conducting fluid of second grad over a stretching sheet subject to a transverse magnetic field is presented by using homotopy analysis method (HAM). Also we examines the effects of viscoelastic parameter, magnetic parameter and time which they control the equation of motion.
This paper presents the non-linear finite element method to study the behavior of four reinforced rectangular concrete MD beams with web circular openings tested under two-point load. The numerical finite elements methods have been used in a much more practical way to achieve approximate solutions for more complex problems. The ABAQUS /CAE is chosen to explore the behavior of MD beams. This paper also studies, the effect of both size and shape of the circular apertures of MD beams. The strengthening technique that used in this paper is externally strengthening using CFRP around the opening in the MD beams. The numerical results were compared to the experimental results in terms of ultimate load failure and displace
... Show MoreIn this paper, we present an approximate method for solving integro-differential equations of multi-fractional order by using the variational iteration method.
First, we derive the variational iteration formula related to the considered problem, then prove its convergence to the exact solution. Also we give some illustrative examples of linear and nonlinear equations.
In this paper, we apply a new technique combined by a Sumudu transform and iterative method called the Sumudu iterative method for resolving non-linear partial differential equations to compute analytic solutions. The aim of this paper is to construct the efficacious frequent relation to resolve these problems. The suggested technique is tested on four problems. So the results of this study are debated to show how useful this method is in terms of being a powerful, accurate and fast tool with a little effort compared to other iterative methods.
In this paper, a computational method for solving optimal problem is presented, using indirect method (spectral methodtechnique) which is based on Boubaker polynomial. By this method the state and the adjoint variables are approximated by Boubaker polynomial with unknown coefficients, thus an optimal control problem is transformed to algebraic equations which can be solved easily, and then the numerical value of the performance index is obtained. Also the operational matrices of differentiation and integration have been deduced for the same polynomial to help solving the problems easier. A numerical example was given to show the applicability and efficiency of the method. Some characteristics of this polynomial which can be used for solvin
... Show MoreThe main purpose of the work is to apply a new method, so-called LTAM, which couples the Tamimi and Ansari iterative method (TAM) with the Laplace transform (LT). This method involves solving a problem of non-fatal disease spread in a society that is assumed to have a fixed size during the epidemic period. We apply the method to give an approximate analytic solution to the nonlinear system of the intended model. Moreover, the absolute error resulting from the numerical solutions and the ten iterations of LTAM approximations of the epidemic model, along with the maximum error remainder, were calculated by using MATHEMATICA® 11.3 program to illustrate the effectiveness of the method.