The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Convolutional Neural Network (CNN) has been chosen as a better option for the training process because it produces a high accuracy. The final accuracy has reached 91.18% in five different classes. The results are discussed in terms of the probability of accuracy for each class in the image classification in percentage. Cats class got 99.6 %, while houses class got 100 %.Other types of classes were with an average score of 90 % and above.
The art of preventing the detection of hidden information messages is the way that steganography work. Several algorithms have been proposed for steganographic techniques. A major portion of these algorithms is specified for image steganography because the image has a high level of redundancy. This paper proposed an image steganography technique using a dynamic threshold produced by the discrete cosine coefficient. After dividing the green and blue channel of the cover image into 1*3-pixel blocks, check if any bits of green channel block less or equal to threshold then start to store the secret bits in blue channel block, and to increase the security not all bits in the chosen block used to store the secret bits. Firstly, store in the cente
... Show MoreThis paper present a study about effect of the random phase and expansion of the scale sampling factors to improve the monochrome image hologram and compared it with previous produced others. Matlab software is used to synthesize and reconstruction hologram.
NGC 6946 have been observed with BVRI filters, on October 15-18,
2012, with the Newtonian focus of the 1.88m telescope, Kottamia
observatory, of the National Research Institute of Astronomy and
Geophysics, Egypt (NRIAG), then we combine the BVRI filters to
obtain an astronomical image to the spiral galaxy NGC 6946 which
is regarded main source of information to discover the components of
this galaxy, where galaxies are considered the essential element of
the universe. To know the components of NGC 6946, we studied it
with the Variable Precision Rough Sets technique to determine the
contribution of the Bulge, disk, and arms of NGC 6946 according to
different color in the image. From image we can determined th
Nonlinear time series analysis is one of the most complex problems ; especially the nonlinear autoregressive with exogenous variable (NARX) .Then ; the problem of model identification and the correct orders determination considered the most important problem in the analysis of time series . In this paper , we proposed splines estimation method for model identification , then we used three criterions for the correct orders determination. Where ; proposed method used to estimate the additive splines for model identification , And the rank determination depends on the additive property to avoid the problem of curse dimensionally . The proposed method is one of the nonparametric methods , and the simulation results give a
... Show MoreMalicious software (malware) performs a malicious function that compromising a computer system’s security. Many methods have been developed to improve the security of the computer system resources, among them the use of firewall, encryption, and Intrusion Detection System (IDS). IDS can detect newly unrecognized attack attempt and raising an early alarm to inform the system about this suspicious intrusion attempt. This paper proposed a hybrid IDS for detection intrusion, especially malware, with considering network packet and host features. The hybrid IDS designed using Data Mining (DM) classification methods that for its ability to detect new, previously unseen intrusions accurately and automatically. It uses both anomaly and misuse dete
... Show MoreAcinetobacter baumannii (A. baumannii ) is considered a critical healthcare problem for patients in intensive care units due to its high ability to be multidrug-resistant to most commercially available antibiotics. The aim of this study is to develop a colorimetric assay to quantitatively detect the target DNA of A. baumannii based on unmodified gold nanoparticles (AuNPs) from different clinical samples (burns, surgical wounds, sputum, blood and urine). A total of thirty-six A. baumannii clinical isolates were collected from five Iraqi hospitals in Erbil and Mosul provinces within the period from September 2020 to January 2021. Bacterial isolation and biochemical identification of isolates
... Show MoreA numerical investigation of mixed convection in a horizontal annulus filled with auniform fluid-saturated porous medium in the presence of internal heat generation is carried out.The inner cylinder is heated while the outer cylinder is cooled. The forced flow is induced by thecold outer cylinder rotating at a constant angular velocity. The flow field is modeled using ageneralized form of the momentum equation that accounts for the presence of porous mediumviscous, Darcian and inertial effects. Discretization of the governing equations is achieved usinga finite difference method. Comparisons with previous works are performed and the results showgood agreement. The effects of pertinent parameters such as the Richardson number and internalRay
... Show More