Many undergraduate learners at English departments who study English as a foreign language are unable to speak and use language correctly in their post -graduate careers. This problem can be attributed to certain difficulties, which they faced throughout their education years that hinder their endeavors to learn. Therefore, this study aims to discover the main difficulties faced by EFL students in language learning and test the difficulty variable according to gender and college variables then find suitable solutions for enhancing learning. A questionnaire with 15 items and 5 scales were used to help in discovering the difficulties. The questionnaire was distributed to the selected sample of study which consists of 90 (male and female) students selected randomly from the 3rd and 4th year class levels at English departments from colleges of Languages and Education (Ibn-Rushd) at the University of Baghdad. The results of the study showed that EFL students face difficulties in language learning such as the role of society in discouraging English language learning, the learners’ shyness, which prevents them from speaking English in fear of making mistakes, lack of motivation, and the influence of class size and crowdedness. After analyzing the results, some recommendations and suggestions were presented to solve the problem and eliminate difficulties.
Deep Learning Techniques For Skull Stripping of Brain MR Images
Idioms are a very important part of the English language: you are told that if you want to go far (succeed) you should pull your socks up (make a serious effort to improve your behaviour, the quality of your work, etc.) and use your grey matter (brain).1 Learning and translating idioms have always been very difficult for foreign language learners. The present paper explores some of the reasons why English idiomatic expressions are difficult to learn and translate. It is not the aim of this paper to attempt a comprehensive survey of the vast amount of material that has appeared on idioms in Adams and Kuder (1984), Alexander (1984), Dixon (1983), Kirkpatrick (2001), Langlotz (2006), McCarthy and O'Dell (2002), and Wray (2002), among others
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreHierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutil
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023
In this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A
... Show MoreThe two researchers selected the problem of research which represented with the following asking: Does the use of the shape of Round house strategy have effectiveness in the collection of students of the Department of Art Education of the subjectof teaching methods?
The research aims to "measure the effectiveness of Strategy shape of Round house in the collection of students of the Department of Art Education for the material teaching methods" and to verify the aim of the research two zeroassumptions was identified to measure the level of achievement in the subject of teaching methods of third stage students in the Department of Art Education –College of Fine Arts.
The research community included the students of Art Education Dep