Preferred Language
Articles
/
jcoeduw-1354
Obese Women and Choosing Ready-made Clothes: Difficulties and Choices
...Show More Authors

Thisstudy aims to determine the specifications of obese women accordingto the heightand type of obesity. It also aimstoidentify the significance of differences in choosing ready-made clothes for the research sample. Finally, the significance of differences in choosing ready-made clothes according to the variable of binaryclassification ofobesity is also identified.The study sample includes obese women: employees, non-employees and students with the age group (18-50) years.The weights and lengths of the sample have been taken to suit the group of obese women.Aquestionnaire in the form of an open question was distributed among (50) obese womenso as to extract the items of the questionnaire. After that, the questionnaire was distributed among (100) obese women to obtain answers. Thedata were statistically analyzed and the BMI indicated thatthere were four types of obesity for the sample studied: overweight and high obesity, very high obesity, excessive obesity, and obese to the extreme.Itwas called abinary classification. The first type included (42) obese women,whilethe second type included (58) obese women .The bodies of the sample were identified: (22%)of the sample representedshort obese women,the ratio of (68%) represented obese women of medium-length, and the proportion of (10%)represented tall obese women. It has become clear through the recognition of the significance of differences when choosing clothes in general, that  they areall statistically significantexcept for the seventh item (the best clothes are those with dark-colors, because they make me look thinner). Besides,there are no individual differencesin the sample responses in favor of the answer (sometimes) at the rate of (5.180).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jun 01 2024
Journal Name
Alexandria Engineering Journal
U-Net for genomic sequencing: A novel approach to DNA sequence classification
...Show More Authors

The precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Mar 17 2019
Journal Name
Baghdad Science Journal
Hn-Domination in Graphs
...Show More Authors

The aim of this article is to introduce a new definition of domination number in graphs called hn-domination number denoted by . This paper presents some properties which show the concepts of connected and independent hn-domination. Furthermore, some bounds of these parameters are determined, specifically, the impact on hn-domination parameter is studied thoroughly in this paper when a graph is modified by deleting or adding a vertex or deleting an edge.

View Publication Preview PDF
Scopus (52)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Self-Localization of Guide Robots Through Image Classification
...Show More Authors

The field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots.  To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
The Quality of University Education at the Middle Technical University in The Light of the Application of National Ranking project for the Quality of Iraqi Universities
...Show More Authors

The research aims to identify ways of upgrading the quality level of university education at the Middle Technical University in light of its application for the National Ranking project for the quality of Iraqi universities in order to obtain advanced grades among the Iraqi universities , Which is qualified to enter the Ranking of universities worldwide, through displaying the mechanism of the Application of  National Ranking project for the quality of Iraqi universities in the Middle Technical University and its formations consisting of (5) technical colleges and (11) technical institute.

        The results of the application showed several observations: The most

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Research on Emotion Classification Based on Multi-modal Fusion
...Show More Authors

Nowadays, people's expression on the Internet is no longer limited to text, especially with the rise of the short video boom, leading to the emergence of a large number of modal data such as text, pictures, audio, and video. Compared to single mode data ,the multi-modal data always contains massive information. The mining process of multi-modal information can help computers to better understand human emotional characteristics. However, because the multi-modal data show obvious dynamic time series features, it is necessary to solve the dynamic correlation problem within a single mode and between different modes in the same application scene during the fusion process. To solve this problem, in this paper, a feature extraction framework of

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Iec2017 Proceedings Book
Improving TF-IDF with Singular Value Decomposition (SVD) for Feature Extraction on Twitter
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Sat Oct 31 2020
Journal Name
International Journal Of Intelligent Engineering And Systems
Speech Emotion Recognition Using MELBP Variants of Spectrogram Image
...Show More Authors

View Publication Preview PDF
Scopus (7)
Crossref (4)
Scopus Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Variant Domination Types for a Complete h-ary Tree
...Show More Authors

Graph  is a tool that can be used to simplify and solve network problems. Domination is a typical network problem that graph theory is well suited for. A subset of nodes in any network is called dominating if every node is contained in this subset, or is connected to a node in it via an edge. Because of the importance of domination in different areas, variant types of domination have been introduced according to the purpose they are used for. In this paper, two domination parameters the first is the restrained and the second is secure domination have been chosn. The secure domination, and some types of restrained domination in one type of trees is called complete ary tree  are determined.

View Publication Preview PDF
Scopus (18)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref