The feature extraction step plays major role for proper object classification and recognition, this step depends mainly on correct object detection in the given scene, the object detection algorithms may result with some noises that affect the final object shape, a novel approach is introduced in this paper for filling the holes in that object for better object detection and for correct feature extraction, this method is based on the hole definition which is the black pixel surrounded by a connected boundary region, and hence trying to find a connected contour region that surrounds the background pixel using roadmap racing algorithm, the method shows a good results in 2D space objects.
Keywords: object filling, object detection, object holes, noise removal, scanning 2D objects.
The aim of this study is to investigate the sedimentation environments and diagenetic processes of the Ibrahim Formation (Oligocene-early Miocene) in Zurbatiya, eastern Iraq. The Ibrahim Formation is comprised mostly of clayey micrite and skeletal grains composed of planktonic foraminifera, calcispheres, radiolaria, and benthic foraminifera. Glauconite and pyrite were documented in some restricted zones of this formation; they reflect quiet and reducing conditions. Radiolaria were identified in Late-Oligocene which was not known previously at this age regionally in carbonate formations of the Arabian Plate (AP). Mudstone, wackestone, and planktonic foraminiferal wackepackstone are the main microfacies that are affected by dissolutio
... Show MoreFree vibration behavior was developed under the ratio of critical buckling temperature of laminated composite thin plates with the general elastic boundary condition. The equations of motion were found based on classical laminated plate theory (CLPT) while the solution functions consists of trigonometric function and a continuous function that is added to guarantee the sufficient smoother of the so-named remaining displacement function at the boundaries, in this research, a modified Fourier series were used, a generalized procedure solution was developed using Ritz method combined with the imaginary spring technique. The influences of many design parameters such as angles of layers, aspect ratio, thickness ratio, and ratio of initial in-
... Show MoreNumerical Investigation was done for steady state laminar mixed convection and thermally and hydrodynamic fully developed flow through horizontal rectangular duct including circular core with two cases of time periodic boundary condition, first case on the rectangular wall while keeping core wall constant and other on both the rectangular duct and core walls. The used governing equations are continuity momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C.) methods. The Finite Difference approach with the Line Successive Over Relaxation (LSOR) method is used to obtain all the computational results the (B.F.C.) method is used to generate th
... Show MoreTransient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic pressure head , , , , and ), sinusoidal amplitude range of
... Show MoreThis paper considers approximate solution of the hyperbolic one-dimensional wave equation with nonlocal mixed boundary conditions by improved methods based on the assumption that the solution is a double power series based on orthogonal polynomials, such as Bernstein, Legendre, and Chebyshev. The solution is ultimately compared with the original method that is based on standard polynomials by calculating the absolute error to verify the validity and accuracy of the performance.
The primary objective of the current paper is to suggest and implement effective computational methods (DECMs) to calculate analytic and approximate solutions to the nonlocal one-dimensional parabolic equation which is utilized to model specific real-world applications. The powerful and elegant methods that are used orthogonal basis functions to describe the solution as a double power series have been developed, namely the Bernstein, Legendre, Chebyshev, Hermite, and Bernoulli polynomials. Hence, a specified partial differential equation is reduced to a system of linear algebraic equations that can be solved by using Mathematica®12. The techniques of effective computational methods (DECMs) have been applied to solve some s
... Show MoreThe advertisement is important in maximizing the resources of journalistic institutions. It helps them to perform their duties and also establishes their independence. However, this type of communication has often overlapped with other types of communication, including media and publicity.
Those in charge of the press bear responsibility in this regard, as some of them harness the advertisement for personal purposes; or detrimental to media content. Many communication authorities have drawn attention to the danger of confusing the concepts and levels of the three activities and have moved towards establishing rules to reduce overlap between them.
The aim of this research is to try to disengage the concept of advertising,
... Show MoreIn this research , we study the inverse Gompertz distribution (IG) and estimate the survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes