Preferred Language
Articles
/
jcoeduw-1212
HandWritten Numerals Recognition System

  Recognition is one of the basic characteristics of human brain, and also for the living   creatures. It is possible to recognize images, persons, or patterns according to their characteristics. This recognition could be done using eyes or dedicated proposed methods. There are numerous applications for pattern recognition such as recognition of printed or handwritten letters, for example reading post addresses automatically and reading documents or check reading in bank.

      One of the challenges which faces researchers in character recognition field is the recognition of digits, which are written by hand. This paper describes a classification method for on-line handwritten digits and off-line handwritten digits in same time using Genetic Algorithm.

      Genetic Algorithms (GAs), are search procedures that use the mechanics of natural selection and natural genetics, have been used in this paper to solve numbers recognition problem. The genetic algorithm treats numbers as a binary string of [6 x 10] pixels and by the process of mating and mutating; the input string is matched to the closest existing character in a database. The proposed method is tested on a sample of 500 digits written by 10 different persons and found to perform satisfactorily most of the time; this paper realized a high percentage of 85%.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 02 2022
Journal Name
Advances In Science And Technology Research Journal
Scopus (8)
Crossref (3)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu May 28 2020
Journal Name
Iraqi Journal Of Science
Human Action Recognition Based on Bag-of-Words

Human action recognition has gained popularity because of its wide applicability, such as in patient monitoring systems, surveillance systems, and a wide diversity of systems that contain interactions between people and electrical devices, including human computer interfaces. The proposed method includes sequential stages of object segmentation, feature extraction, action detection and then action recognition. Effective results of human actions using different features of unconstrained videos was a challenging task due to camera motion, cluttered background, occlusions, complexity of human movements, and variety of same actions performed by distinct subjects. Thus, the proposed method overcomes such problems by using the fusion of featur

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Dec 29 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Smartphone -Based Model for Human Activity Recognition

Activity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classif

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Thu Oct 25 2018
Journal Name
Journal Of Planner And Development
View Publication Preview PDF
Publication Date
Sat Jun 01 2024
Journal Name
International Journal Of Advanced And Applied Sciences
High-accuracy models for iris recognition with merging features

Due to advancements in computer science and technology, impersonation has become more common. Today, biometrics technology is widely used in various aspects of people's lives. Iris recognition, known for its high accuracy and speed, is a significant and challenging field of study. As a result, iris recognition technology and biometric systems are utilized for security in numerous applications, including human-computer interaction and surveillance systems. It is crucial to develop advanced models to combat impersonation crimes. This study proposes sophisticated artificial intelligence models with high accuracy and speed to eliminate these crimes. The models use linear discriminant analysis (LDA) for feature extraction and mutual info

... Show More
Scopus Crossref
View Publication
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Emergency Fuel Rationing system using RFID Smart Cards

Rationing is a commonly used solution for shortages of resources and goods that are vital for the citizens of a country. This paper identifies some common approaches and policies used in rationing as well asrisks that associated to suggesta system for rationing fuelwhichcan work efficiently. Subsequently, addressing all possible security risks and their solutions. The system should theoretically be applicable in emergency situations, requiring less than three months to implement at a low cost and minimal changes to infrastructure.

Crossref
View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
Scopus (3)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Apr 29 2018
Journal Name
Iraqi Journal Of Science
Printed Arabic Characters Recognition Based on Minimum Distance Classifier Technique

     The printed Arabic character recognition are faced numerous challenges due to its character body which are changed depending on its position in any sentence (at beginning or in the middle or in the end of the word). This paper portrays recognition strategies. These strategies depend on new pre-processing processes, extraction the structural and numerical features to build databases for printed alphabetical Arabic characters. The database information that obtained from features extracted was applied in recognition stage. Minimum Distance Classifier technique (MDC) was used to classify and train the classes of characters. The procedure of one character against all characters (OAA) was used in determination the rate

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 12 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Recognition of Off-line Printed Arabic Text Using Hidden Markov Models

In this paper, we introduce a method to identify the text printed in Arabic, since the recognition of the printed text is very important in the applications of information technology, the Arabic language is among a group of languages with related characters such as the language of Urdu , Kurdish language , Persian language also the old Turkish language " Ottoman ", it is difficult to identify the related letter because it is in several cases, such as the beginning of the word has a shape and center of the word has a shape and the last word also has a form, either texts in languages where the characters are not connected, then the image of the letter one in any location in the word has been Adoption of programs ready for him A long time.&

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
An Adaptive Harmony Search Part-of-Speech tagger for Square Hmong Corpus

Data-driven models perform poorly on part-of-speech tagging problems with the square Hmong language, a low-resource corpus. This paper designs a weight evaluation function to reduce the influence of unknown words. It proposes an improved harmony search algorithm utilizing the roulette and local evaluation strategies for handling the square Hmong part-of-speech tagging problem. The experiment shows that the average accuracy of the proposed model is 6%, 8% more than HMM and BiLSTM-CRF models, respectively. Meanwhile, the average F1 of the proposed model is also 6%, 3% more than HMM and BiLSTM-CRF models, respectively.

Scopus (1)
Scopus Crossref
View Publication Preview PDF