Preferred Language
Articles
/
jcoeduw-1212
HandWritten Numerals Recognition System
...Show More Authors

  Recognition is one of the basic characteristics of human brain, and also for the living   creatures. It is possible to recognize images, persons, or patterns according to their characteristics. This recognition could be done using eyes or dedicated proposed methods. There are numerous applications for pattern recognition such as recognition of printed or handwritten letters, for example reading post addresses automatically and reading documents or check reading in bank.

      One of the challenges which faces researchers in character recognition field is the recognition of digits, which are written by hand. This paper describes a classification method for on-line handwritten digits and off-line handwritten digits in same time using Genetic Algorithm.

      Genetic Algorithms (GAs), are search procedures that use the mechanics of natural selection and natural genetics, have been used in this paper to solve numbers recognition problem. The genetic algorithm treats numbers as a binary string of [6 x 10] pixels and by the process of mating and mutating; the input string is matched to the closest existing character in a database. The proposed method is tested on a sample of 500 digits written by 10 different persons and found to perform satisfactorily most of the time; this paper realized a high percentage of 85%.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jun 01 2024
Journal Name
International Journal Of Advanced And Applied Sciences
High-accuracy models for iris recognition with merging features
...Show More Authors

Due to advancements in computer science and technology, impersonation has become more common. Today, biometrics technology is widely used in various aspects of people's lives. Iris recognition, known for its high accuracy and speed, is a significant and challenging field of study. As a result, iris recognition technology and biometric systems are utilized for security in numerous applications, including human-computer interaction and surveillance systems. It is crucial to develop advanced models to combat impersonation crimes. This study proposes sophisticated artificial intelligence models with high accuracy and speed to eliminate these crimes. The models use linear discriminant analysis (LDA) for feature extraction and mutual info

... Show More
View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Thu Oct 25 2018
Journal Name
Journal Of Planner And Development
التحول في المنظومة الجينية للمناطق التراثية
...Show More Authors

View Publication Preview PDF
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
3-D OBJECT RECOGNITION USING MULTI-WAVELET AND NEURAL NETWORK
...Show More Authors

This search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 02 2012
Journal Name
Journal Of Engineering
3-D Object Recognition using Multi-Wavelet and Neural Network
...Show More Authors

This search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as com

... Show More
View Publication
Publication Date
Thu Oct 01 2020
Journal Name
Defence Technology
A novel facial emotion recognition scheme based on graph mining
...Show More Authors

Recent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T

... Show More
View Publication Preview PDF
Scopus (47)
Crossref (37)
Scopus Clarivate Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
An Adaptive Harmony Search Part-of-Speech tagger for Square Hmong Corpus
...Show More Authors

Data-driven models perform poorly on part-of-speech tagging problems with the square Hmong language, a low-resource corpus. This paper designs a weight evaluation function to reduce the influence of unknown words. It proposes an improved harmony search algorithm utilizing the roulette and local evaluation strategies for handling the square Hmong part-of-speech tagging problem. The experiment shows that the average accuracy of the proposed model is 6%, 8% more than HMM and BiLSTM-CRF models, respectively. Meanwhile, the average F1 of the proposed model is also 6%, 3% more than HMM and BiLSTM-CRF models, respectively.

View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Theoretical And Applied Information Technology
A Survey on the Vein Biometric Recognition Systems: Trends and Challenges
...Show More Authors

Vascular patterns were seen to be a probable identification characteristic of the biometric system. Since then, many studies have investigated and proposed different techniques which exploited this feature and used it for the identification and verification purposes. The conventional biometric features like the iris, fingerprints and face recognition have been thoroughly investigated, however, during the past few years, finger vein patterns have been recognized as a reliable biometric feature. This study discusses the application of the vein biometric system. Though the vein pattern can be a very appealing topic of research, there are many challenges in this field and some improvements need to be carried out. Here, the researchers reviewed

... Show More
Publication Date
Sun Feb 25 2024
Journal Name
Tikrit Journal Of Pure Science
Optical Mark Recognition using Modify Bi-directional Associative Memory
...Show More Authors

Optical Mark Recognition (OMR) is an important technology for applications that require speedy, high-accuracy processing of a huge volume of hand-filled forms. The aim of this technology is to reduce manual work, human effort, high accuracy in assessment, and minimize time for evaluation answer sheets. This paper proposed OMR by using Modify Bidirectional Associative Memory (MBAM), MBAM has two phases (learning and analysis phases), it will learn on the answer sheets that contain the correct answers by giving its own code that represents the number of correct answers, then detection marks from answer sheets by using analysis phase. This proposal will be able to detect no selection or select more than one choice, in addition, using M

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model
...Show More Authors

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
View Publication Preview PDF
Scopus (8)
Scopus Clarivate Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Emergency Fuel Rationing system using RFID Smart Cards
...Show More Authors

Rationing is a commonly used solution for shortages of resources and goods that are vital for the citizens of a country. This paper identifies some common approaches and policies used in rationing as well asrisks that associated to suggesta system for rationing fuelwhichcan work efficiently. Subsequently, addressing all possible security risks and their solutions. The system should theoretically be applicable in emergency situations, requiring less than three months to implement at a low cost and minimal changes to infrastructure.

View Publication Preview PDF
Crossref