Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to those gotten from other popular methods inthis field, such as Zero Crossing Rate (ZCR), Amplitude Descriptor (AD), Short Time Energy (STE), and Volume (Vo). The test results indicated, that the attained averageaccuracy of classification is improved up to94.9232% for training set and 95.8666%for testing set.The classification performance of these two extracted featuresets is studied individually, and then they used together as one feature set. Theiroverall performance is investigated, the test results showed that the proposed methods give high classification rates for the audio.
RA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2
The petroleum industry, which is one of the pillars of the national economy, has the potential to generate vast wealth and employment possibilities. The transportation of petroleum products is complicated and changeable because of the hazards caused by the corrosion consequences. Hazardous chemical leaks caused by natural disasters may harm the environment, resulting in significant economic losses. It significantly threatens the aim for sustainable development. When a result, determining the likelihood of leakage and the potential for environmental harm, it becomes a top priority for decision-makers as they develop maintenance plans. This study aims to provide an in-depth understanding of the risks associated with oil and gas pipeli
... Show MoreThe university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Optimizer-based Hyper Heuristic (HH PSO) to solve UCTP efficiently. PSO is used as a higher-level method that selects low-level heuristics (LLH) sequence which further generates an optimal solution. The proposed a
... Show MoreAcute appendicitis is one of the commonest causes of acute abdomen. There is a wide discussion and controversy on the surgical and nonsurgical treatment of acute uncomplicated appendicitis. The aim of this study was to evaluate the efficacy and outcomes of the conservative management of selected cases of acute appendicitis with an antibiotic first plan.
This was a single hospital-based prospective study with a durat
The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre
... Show MoreThis research has come out with that, function-based responsibility accounting system has harmful side – effects preventing it of achieving its controlling objective, that is, goal congruence, which are due to its un integrated measures, its focus on measuring measurable behaviors while neglecting behaviors that are hardly measured, and its dependence on standard operating procedures.
In addition, the system hypotheses and measures are designed to fit previous business environment, not the current environment.
The research has also concluded that the suggestive model, that is, activity-based responsibility accounting is designed to get ride of harmful side – effects of functi
... Show MoreCompanies compete greatly with each other today, so they need to focus on innovation to develop their products and make them competitive. Lean product development is the ideal way to develop product, foster innovation, maximize value, and reduce time. Set-Based Concurrent Engineering (SBCE) is an approved lean product improvement mechanism that builds on the creation of a number of alternative designs at the subsystem level. These designs are simultaneously improved and tested, and the weaker choices are removed gradually until the optimum solution is reached finally. SBCE implementations have been extensively performed in the automotive industry and there are a few case studies in the aerospace industry. This research describe the use o
... Show More