Background: An accurate adaptation of the crown to the finish line is essential to minimize cement dissolution and to preserve periodontium in fixed partial denture cases. An accurate adaptation of crown is possible only when preparation details are captured adequately in the impression and transferred to cast. For these reasons, gingival displacement is necessary to capture subgingival preparation details.The aim of the present study is to measure in vivo the horizontal displacement of the gingival sulcus obtained by using three new cordless retraction materials (Magic Foam Cord®, Racegel and Astringent Retraction Paste) in comparison to medicated retraction cord. Materials and method: Thirty-two patients requiring porcelain fused to metal fixed partial denture for replacement of a missing maxillary posterior tooth (either one of thepremolars or the first molar). The patients are randomly divided into four groups of eight patients each according to the type of gingival retraction material used as follows: Group I: Medicated retraction cord (racemic epinephrine hydrochloride 0.3 ± 0.2 mg per inch of cord, #00), Group II: Magic Foam Cord® (expanding polyvinyl siloxane), Group III: Racegel (25% aluminum chloride gel) and Group IV: Astringent Retraction Paste (15% aluminum chloride paste). Three depth orientation grooves were prepared in the buccal and palatal surfaces of a maxillary premolar parallel with the long axis of the tooth, extending from the middle third to the gingival third with the level of the free gingiva using a flat-ended diamond fissure bur. Impression of the gingival sulcus was then made using monophase polyether impression material (Impregum™ Penta™ Soft, 3M ESPE, Germany), before and after gingival retraction with either of the aforementioned gingival retraction materials. The sulcus width, before and after gingival retraction was measured on the master cast (in µm), after its sectioning longitudinally bucco-palatally at the middle of the prepared grooves using a rotary diamond disc. The measurement carried out by using digital microscope (Dino-Lite)at a magnification of 230X. The horizontal gingival displacement (the distance from the end of each prepared groove to the crest of the gingiva) measured by subtracting the gingival sulcus width after retraction from that before retraction. Results: The findings of the present study showed that the highest mean of horizontal gingival displacement is recorded by Group IV (Astringent Retraction Paste) (250.7900 µm), whereas the lowest mean of horizontal gingival displacement is recorded by Group III (Racegel) (78.0988 µm). One-way ANOVA test showed statistically highly significant differences among groups (p< 0.01). Least Significant Difference test (LSD test) was also used to make multiple comparisons among groups and revealed a statistically highly significant difference between each two groups (p< 0.01). Conclusion: The two new gingival retraction pastes (Astringent Retraction Paste and Magic Foam Cord®) could be used for gingival retraction as alternatives to medicated retraction cord. They offer advantages of simplified placement technique and shorter application time with greater gingival retraction. Meanwhile, the use of Racegel alone is not recommended for gingival retraction since it provides the least gingival displacement.
The current research discusses the topic of the formal data within the methodological framework through defining the research problem, limits and objectives and defining the most important terms mentioned in this research. The theoretical framework in the first section addressed (the concept of the Bauhaus school, the philosophy of the Bauhaus school and the logical bases of this school). The second section dealt with (the most important elements and structural bases of the Bauhaus school) which are considered the most important formal data of this school and their implications on the fabrics and costumes design. The research came up with the most important indicators resulting from the theoretical framework.
Chapter three defined the
An experiment was conducted in pots under field conditions during fall seasons of 2017 and 2018. This study aimed to improve a weak growth of seedlings under salt stress in sorghum. Three factors were studied. 1st factor was three cultivars (Inqath, Rabeh, and Buhoth70). 2nd factor was seed priming (primed and unprimed seed). Seed were primed by soaking for 12 hours in a solution containing 300 + 70 mg L−1 of gibberellic (GA3) and salicylic (SA) acids, respectively. 3rd factor was irrigation with saline water (6, 9 and 12 dS m−1) resulting from dissolving sodium chloride in distilled water in addition to control treatment (distilled water). Randomized complete block design was used with four replications. In both seasons: the results sh
... Show MoreA new ligand N-((4-(phenylamino) phenyl) carbamothioyl) acetamide (PCA) was synthesized by reaction of (4-amino di phenyl amine) with (acetyl isothiocyante) by using acetone as a solvent. The prepared ligand(PCA) has been characterization by elemental analysis (CHNS), infrared(FT-IR),electronic spectral (UV-Vis)&1H,13C- NMR spectra. Some Divalent Metal ion complexes of ligand (PCA) were prepared and spectroscopic studies by infrared(FT-IR), electronic spectral (UV-Vis), molar conductance, magnetic susceptibility and atomic absorption. The results measured showed the formula ofFall prepared complexes were [M (PCA)2 Cl2] (M+2 = Mn, Co, Ni, CU, Zn, Cd &Hg),the proposed geometrical structure for all complexes wereeoctahedral.
The research included preparation of new Schiff base (L) by two steps: preparation of precursor [bis(2-formyl-6-methoxyphenyl) succinate] (P) by reacting (3-methoxy salicyl aldehyde) with (succinoyl dichloride) as first step then react the prepared precursor (P) with (ethanethioamide) to have the new Schiff base [bis(2-((ethane thioyl imino) methyl)-6-methoxy phenyl) succinate] (L) as second step. Characterized compounds based on Mass spectra, 1 H, 13CNMR (for ligand (L)), FT-IR and UV spectrum, melting point, molar conduct, %C, %H, and %N, the percentage of the metal in complexes %M, magnetic susceptibility, while study corrosion inhibition (mild steel) in acid solution by weight loss. These measurements proved that by (Oxygen, Nitrogen, a
... Show MoreBackground: Visfatin is a novel adipokine that mainly secreted by visceral adipose tissue, had an important role in inflammation and immune system. Creatine Kinase (CK) which is an enzyme that is involved in energy metabolism, found in large amounts in myocardium, brain and skeletal tissues. This study is carried out To evaluate the periodontal health status of the study groups (chronic periodontitis and chronic periodontitis with coronary atherosclerosis) and control groups, to measure the salivary levels of visfatin and Creatine Kinase in these groups and compare between them, and to determine the correlations between salivary visfatin and Creatine Kinase levels with the periodontal parameters in the three groups. Materials and Methods: e
... Show MoreThree mesoporous silica with different functional group were prepared by one-step synthesis based on the simultaneous hydrolysis and condensation of sodium silicate with organo - silane in the presence of template surfactant polydimethylsiloxane - polyethyleneoxide (PDMS - PEO). The prepared materials were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), atomic force microscopy (AFM) and nitrogen adsorption/desorption experiments. The results indicate that the preparation of methyl and phenyl functionalized silica were successful and the mass of methyl and phenyl groups bonded to the silica structure are 15, 38 mmol per gram silica. The average diameter of the silica particles are 103.51,
... Show More