Background: Oral squamous cell carcinoma represents the vast majority of oral cancer it is a common malignant tumor with an increasing incidence. Around the world, the 5 year mortality rate of oral cancer is about 50%. Thus novel biomarkers for early detection oral squamous cell carcinoma are needed. The level of three salivary microRNAs namely hsa-miR-200a, hsa-miR-125a and hsa- miR-93 were measured in saliva of patients with oral squamous cell carcinoma and compared their levels in saliva of healthy control subjects to determine their potential as oral cancer biomarker. Materials and methods: The level of these three microRNAs was measured by using revers transcription, preamplification and quantitative PCR. Results: Only miR-200a present in a significantly lower level (p<0.05) in the saliva of oral squamous cell carcinoma patients than in control. miR-200a was the strongest parameter (most affected by disease status) in the context of differentiation between OSSC and healthy controls (having the highest ROC area of 0.781 which is significantly higher than the area associated with equivocal test). Coming next in order of importance in the context of case-control differentiation was normalized CT values for hsa-miR-93, which has a reasonably high ROC (0.650), but failed to show statically significance differences, P>0.05. Conclusions: The detection of miRNAs in saliva can be used as noninvasive and rapid diagnostic tool for the diagnosis of oral cancer.
In this research the a-As flims have been prepared by thermal evaporation with thickness 250 nm and rata of deposition r_d(1.04nm/sec) as function to annealing temperature (373 and 473K), from XRD analysis we can see that the degree of crystalline increase with T_a, and I-V characteristic for dark and illumination shows that forward bias current varieties approximately exponentially with voltage bias. Also we found that the quality factor and saturation current dependence on annealing temperatures.
In this study, tin oxide (SnO2) and mixed with cadmium oxide (CdO) with concentration ratio of (5, 10, 15, 20)% films were deposited by spray pyrolysis technique onto glass substrates at 300ºC temperature. The structure of the SnO2:CdO mixed films have polycrystalline structure with (110) and (101) preferential orientations. Atomic force microscopy (AFM) show the films are displayed granular structure. It was found that the grain size increases with increasing of mixed concentration ratio. The transmittance in visible and NIR region was estimated for SnO2:CdO mixed films. Direct optical band gap was estimated for SnO2 and SnO2 mixed CdO and show a decrease in the energy gap with increasing mixing ratio. From Hall measurement, it was fou
... Show MoreThe synthesis of nanoparticles (GNPs) from the reduction of HAuCl4 .3H2O by aluminum metal was obtained in aqueous solution with the use of Arabic gum as a stabilizing agent. The GNPs were characterized by TEM, AFM and Zeta potential spectroscopy. The reduction process was monitored over time by measuring ultraviolet spectra at a range of λ 520-525 nm. Also the color changes from yellow to ruby red, shape and size of GNP was studied by TEM. Shape was spherical and the size of particles was (12-17.5) nm. The best results were obtained at pH 6.
Primary amide derivatives as histone deacetylase inhibitors (HDACIs) are very rare. This paper describes the synthesis of primary amide derivatives (compounds 6 and 7) that have the requirements to be histone deacetylase inhibitors of the zinc-binding type. Both of them exhibited good cytotoxicity against the tested cancer cell lines with much lower cytotoxicity against normal cell line.
Aminomethylene Meldrum’s acid derivatives were synthesized by a three-component, one-pot reaction of Meldrum's acid with triethyl orthoformate and different aromatic amines. The prepared compounds were characterized using Fourier transform infrared (FT-IR), nuclear magnetic resonance (1H NMR and 13C NMR) and evaluated as anti-corrosion and anti-rust additives by blending with base lubricating oil, according to the American Society of Testing and Materials (ASTM-D130 and ASTM-D665). The blends of the synthesized compounds with the base lubricating oil showed better anti-rust and anti-corrosion effects than the base oil Blank).
This article includes the preparation of luminescence materials from rare earth (Eu ) ion doping Yttrium Oxide (Y2O3) 70% and SiO2 25% and study the characteristics of phosphors for ultraviolet to visible conversion. The phosphor materials have been synthesized by two steps: Preparing the powder by solid state method using Y2O3, SiO2 and Eu2O3 with doping materials concentration (70%, 25% and 5%) respectively and different calcination temperature (1000, 1200 and 1400 oC).
The second step is to prepare the colloid solution by dispersing the produced powder in a polyvinyl alcohol solution (4%) .
Powde
... Show MoreIn this research the a-As flims have been prepared by thermal evaporation with thickness 250 nm and rata of deposition (1.04nm/sec) as function to annealing temperature (373 and 373K), from XRD analysis we can see that the degree of crystalline increase with , and I-V characteristic for dark and illumination shows that forward bias current varieties approximately exponentially with voltage bias. Also we found that the quality factor and saturation current dependence on annealing temperatures.
This study aims to encapsulate atenolol within floating alginate-ethylcellulose beads as an oral controlled-release delivery system using aqueous colloidal polymer dispersion (ACPD) method.To optimize drug entrapment efficiency and dissolution behavior of the prepared beads, different parameters of drug: polymer ratio, polymer mixture ratio, and gelling agent concentration were involved.The prepared beads were investigated with respect to their buoyancy, encapsulation efficiency, and dissolution behavior in the media: 0.1 N HCl (pH 1.2), acetate buffer (pH 4.6) and phosphate buffer (pH 6.8). The release kinetics and mechanism of the drug from the prepared beads was investigated.All prepare
... Show MoreThis study aims to encapsulate atenolol within floating alginate-ethylcellulose beads as an oral controlled-release delivery system using aqueous colloidal polymer dispersion (ACPD) method.To optimize drug entrapment efficiency and dissolution behavior of the prepared beads, different parameters of drug: polymer ratio, polymer mixture ratio, and gelling agent concentration were involved.The prepared beads were investigated with respect to their buoyancy, encapsulation efficiency, and dissolution behavior in the media: 0.1 N HCl (pH 1.2), acetate buffer (pH 4.6) and phosphate buffer (pH 6.8). The release kinetics and mechanism of the drug from the prepared beads was investigated.All prepared atenolol beads remained f
... Show More