Background: Dentin removed during root canal system instrumentation for creating adequate geometry for the canal and cleaning the canal. A new instrument had been marketed with the aim of optimum shaping of all parts of the canal system, however, no information present about the amount of dentin removal compared to conventional rotary system. This study investigated the amount of dentin removal when the canal instrumented by SAF compared with ProTaper by using high resolution computed tomography (micro CT). Materials and Methods: Twenty extracted single canalled teeth were utilized for this study; and randomly divided into 2 groups. In the first group, the root canals were prepared by using protaper rotary system till F2 and the root canal irrigated with 1ml of normal saline after each instrument. The root canals in the second group were prepared using SAF for 2min, with continuous irrigation (normal saline). After rescanning, the amount of dentin removal was calculated. Result: It was clear that the use of SAF system had increase the amount of dentin removal and in quantity larger than that did by ProTaper system & the mean of net difference was (0.288mm ± 0.051). By using t-independent test, there was highly significant difference between the two groups at (p=0.001), with in favor of the SAF system over ProTaper system at p< 0.01; in dentin removal quantity Conclusion: Root canal preparation with SAF-system resulted in more and effectively removed dentin when compared with protaper rotary files.
BN Rashid, Journal of Language Teaching and Research, 2017 - Cited by 1
Forty lower premolars with single root canals prepared with ProtaperNext files to size 25, and obturated with GP/sealer using lateral compaction. Teeth divided randomly into four groups (group n=10). Protaper universal retreatment kit (PUR), D-Race desobturation files (DRD), R-Endo retreatment kit (RE) and Hedstrom (H) files (control) were used to remove GP/sealer in each group. Removal effectiveness assessed by measuring the GP /sealer remnants in the roots after sectioning them into two halves. Stereomicroscope with a digital camera used to capture digital images. Images processed by ImageJ software to measure the percentage of GP/sealer remnants surface area in total, coronal, middle and apical areas of the canal. In the coronal area,
... Show MoreDuring the last decade, there has been a concern about the relation between aluminum residuals in treated water and Alzheimer disease, and more interest has been considered on the development of natural coagulants. The present study aimed to investigate the efficiency of alum as a primary coagulant in conjunction with mallow, Arabic gum and okra as coagulant aids for the treatment of water samples containing synthetic turbidity of kaolin. Jar test experiments were carried out for initial raw water turbidities 100, 200 and 500 (NTU). The optimum doses of alum, mallow, Arabic gum and okra were 20, 2, 1 and 1 mg/L for100 NTU turbidity level, 35, 4, 2 and 3 mg/L , for 200NTU turbidity level and 50, 8, 10 and 8 mg/L for 500 NTU turbidity leve
... Show MoreThe increased use of hybrid PET /CT scanners combining detailed anatomical information along withfunctional data has benefits for both diagnostic and therapeutic purposes. This presented study is to makecomparison of cross sections to produce 18F , 82Sr and68Ge via different reactions with particle incident energy up to 60 MeV as a part of systematic studies on particle-induced activations on enriched natNe, natRb, natGa 18O,85Rb, and 69Ga targets, theoretical calculation of production yield, calculation of requiredtarget and suggestion of optimum reaction to produce: Fluorine-18 , Strontium-82 andGermanium-68 touse in Hybrid Machines PET/CT Scanners.
Abstract
This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per
... Show More