Background: The aim of this study was to comparatively evaluate the push out bond strength (PBS) of root canal fillings using four different obturation techniques (single cone (SC), cold lateral compaction (CLC), continuous wave (CW), and carrier based gutta percha (CBG)). Materials and Methods: Forty mandibular premolar decoronated and instrumented with rotary ProTaper to F3 then teeth were divided randomly into 4 groups of 10 teeth for each as follow: group (I) single- cone obturation with matched-taper gutta-percha, group (II) cold lateral compaction technique, group (III) continuous wave of obturation technique, and group( IV) carrier based gutta-percha technique. Zinc oxide eugenol (ZOE) sealer was used as a root canal sealer for the four groups. After obturation of the root canals, all the roots were sectioned horizontally at three levels in the apical, middle, and cervical thirds of each group. PBS test was performed using digital universal testing machine. Mode of failures was evaluated using digital stereomicroscope (40 X). Collected data were analyzed statistically using one way ANOVA and Tukey test. Results: PBS of CW and CBG significantly higher than SC and CLC, but significantly there were no differences between CW and CBG, and between SC and CLC. Conclusion: Under the condition of this study it can be concluded that thermoplasticized techniques obtain superior PBS of the filling materials in comparisons with cold gutta percha obturation techniques.
The object of the presented study was to monitor the changes that had happened in the main features (water, vegetation, and soil) of Al-Hammar Marsh region. To fulfill this goal, different satellite images had been used in different times, MSS 1973, TM 1990, ETM+ 2000, 2002, and MODIS 2009, 2010. A new technique of the unsupervised classification called (Color Extracting Technique) was used to classify the satellite images. MATLAP programming used the technique and separated Al-Hammar Marsh from other water features (rivers, irrigated lands, etc.) when calculated the changes in the water content of the study region. ArcGIS 9.3 (arcMAP, arcToolbox) were used to achieve this work and calculate area of each class.
Water absorbent polymers (WAP) are new component in producing building materials. They provide internal curing which reduces autogenous cracking, eliminates autogenous shrinkage, mortar strength increased, enhance early age strength to withstand strain, improve the durability, introduce higher early age compressive strength, have higher performance and reduce the effect of insufficient external curing. This research used different percent of polymer balls to choose the percent that provides good development in compressive strength with time for both water and air curing. The water absorption polymer balls in this research have the ability to absorb water and after usage in concrete they spill out the water (internal curing) and shri
... Show MoreThe present work deals with the performance of screw piles constructed in gypseous soil of medium relative density; such piles are extensively used in piles foundations supported structures subjected to axial forces. The carrying capacity and settlement of a single screw pile model of several diameters (20, 30, and 40) mm inserted in gypseous soil is investigated in the present study. The gypsum content of soil used in tests was 40%. The bedding soil used in tests was prepared by raining technique with a relative density of 40%. A physical model was manufactured to demonstrate the tests in the laboratory. The model of screw pile has been manufactured of steel with a total length of 50
Date palm fiber is one of the common wastes available in the M. E. countries essentially Iraq. The aim of search to investigate the performance and effects of fiber date palm on the mechanical properties of high strength concrete, this fiber was used in three ratio 2, 4 and 6 % by vol. of concrete at ages of (7, 28, 90) days. Results demonstrated improvement in the compressive strength increased 19.2 %, 23.6%, 24.9 % for 2%, 4%, 6% of fiber respectively at age 28 days. Flexural strength increases 47.6%, 66.2%, 93.8% form (2,4,6) % of fiber respectively at age 28 days. Density increase about 0.41%, 0, 61 % 0.69 % for (2,4,6) % of fiber respectively at age 28. Absorption water decrease
Test results of six half-scale reinforced concrete flat plates connections with an opening in the vicinity of the column are reported. The test specimens represent a portion of a slab bounded by the lines of contraflexure around the column. The tests were designed to study the effect of openings on the punching shear behavior of the slab-column connections. The test parameters were the location and the size of the openings. One specimen had no opening and the remaining five had various arrangements of openings around the column. All specimens were cast with normal density concrete of approximately 30 MPa compressive strength. The openings in the specimens were square, with the sides parallel to the sides of the column. Three sizes of ope
... Show MoreThis study aims to find the effect of water-cement ratio on the compressive strength of concrete by using ultrasonic pulse velocity test (UPVT). Over 230 standard cube specimens were used in this study, with dimensions of 150mm, and concrete cubes were cured in water at 20 °C. Also, the specimens used in the study were made of concrete with varied water-cement ratio contents from 0.48 to 0.59. The specimens were taken from Diyarbakir-Turkey concrete centers and tested at the structure and material science lab, civil engineering, faculty of engineering from Dicle University. The UPV measurement and compressive strength tests were carried out at the concrete age of 28 days. Their UPV and compressive strength ranged
... Show MoreThis research was carried out to study the effect of plants on the wetted area for two soil types in Iraq and predict an equation to determine the wetted radius and depth for two different soil types cultivated with different types of plants, the wetting patterns for the soils were predicted at every thirty minute for a total irrigation time equal to 3 hr. Five defferent discharges of emitter and five initial volumetric soil moisture contents were used ranged between field capacity and wilting point were utilized to simulate the wetting patterns. The simulation of the water flow from a single point emitter was completed by utilized HYDRUS-2D/3D software, version 2.05. Two methods were used in developing equations to predict the domains o
... Show More