Background: The aim of this study was to comparatively evaluate the push out bond strength (PBS) of root canal fillings using four different obturation techniques (single cone (SC), cold lateral compaction (CLC), continuous wave (CW), and carrier based gutta percha (CBG)). Materials and Methods: Forty mandibular premolar decoronated and instrumented with rotary ProTaper to F3 then teeth were divided randomly into 4 groups of 10 teeth for each as follow: group (I) single- cone obturation with matched-taper gutta-percha, group (II) cold lateral compaction technique, group (III) continuous wave of obturation technique, and group( IV) carrier based gutta-percha technique. Zinc oxide eugenol (ZOE) sealer was used as a root canal sealer for the four groups. After obturation of the root canals, all the roots were sectioned horizontally at three levels in the apical, middle, and cervical thirds of each group. PBS test was performed using digital universal testing machine. Mode of failures was evaluated using digital stereomicroscope (40 X). Collected data were analyzed statistically using one way ANOVA and Tukey test. Results: PBS of CW and CBG significantly higher than SC and CLC, but significantly there were no differences between CW and CBG, and between SC and CLC. Conclusion: Under the condition of this study it can be concluded that thermoplasticized techniques obtain superior PBS of the filling materials in comparisons with cold gutta percha obturation techniques.
In this work Aquatic plant (Nile rose) was used to study adsorption of industrial dye (safranin-O from aqueous solution within several operation conditions. The dried leaves of Nile rose plant were used as adsorbents safranin-O from aqueous solution after different activations such as wet and dry enhancements. The data show increasing in dye solution removal percentage for both activation methods of the adsorbent and also dye removal percentage that was obtained by using adsorbent without any treatment with the progress contact time. The dye removal percentages at equilibrium time 40 minutes were 88.7% at non-activation, 92.3% at thermal activation, and 98.3% at acidic activation. The samples adsorbents before and after adsorption which wer
... Show MoreIn this study, (50–110 nm) magnetic iron oxide (α-Fe2O3) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results sh
... Show MoreDevelopment and population expansion have the lion's share of driving up the fuel cost. Biodiesel has considerable attention as a renewable, ecologically friendly and alternative fuel source. In this study, CaO nanocatalyst is produced from mango leaves as a catalysis for the transesterification of waste cooking oil (WCO) to biodiesel. The mango tree is a perennial plant, and its fruit holds significant economic worth due to its abundance of vitamins and minerals. This plant has a wide geographical range and its leaves can be utilized without any negative impact on its growth and yield. An analysis was conducted to determine the calcium content in the fallen leaves, revealing a significant quantity of calcium that holds potential fo
... Show MoreReinforcing asphalt concrete with polyester fibers considered as an active remedy to alleviate the harmful impact of fatigue deterioration. This study covers the investigation of utilizing two shapes of fibers size, 6.35 mm by 3.00 mm and 12.70 mm by 3.00 mm with mutual concentrations equal to 0.25 %, 0.50 % and 0.75 % by weight of mixture. Composition of asphalt mixture consists of different optimum (40-50) asphalt cement content, 12.50 mm nominal aggregate maximum size with limestone dust as a filler. Following the traditional asphalt cement and aggregate tests, three essential test were carried out on mixtures, namely: Marshall test (105 cylindrical specimens), indirect tensile strength test (21 cylindrical specimens)
... Show MoreIn this work, lead oxide nanoparticles were prepared by laser ablation of lead target immersed in deionized water by using pulsed Nd:YAG laser with laser energy 400 mJ/pulse and different laser pulses. The chemical bonding of lead oxide nps was investigated by Fourier Transform Infrared (FTIR); surface morphology and optical properties were investigated by Scanning Electron Microscope (SEM) and UV-Visible spectroscopy respectively, and the size effect of lead oxide nanoparticles was studied on its antibacterial action against two types of bacteria Gram-negitive (Escherichia coli) and Gram-positive (Staphylococcusaurus) by diffusion method. The antibacterial property results show that the antibacterial activity of the Lead oxide NPs was
... Show MoreDue to its high energy density and near-isothermal storage capability, phase change materials (PCMs) can play a pivotal role in mitigating the temporal mismatch between energy supply and demand in solar thermal systems. The present research addresses the interplay between PCM behavior and fluid flow conditions through comprehensive experimental investigation of two systems of PCM-based thermal collectors throughout charging, melting, and discharging eras. Both systems use paraffin wax as PCM, one with a melting temperature of 38 °C, and the other with 50 °C. The two systems were designed, manufactured, and tested simultaneously in same real outdoor conditions under four water flow rates covering laminar and turbulent regimes. It is found
... Show MoreENGLISH