Background: The microhardness of a composite resin is a vital parameter that is used to determine its clinical behavior. Measuring the microhardness of a composite resin has been used as an indirect method to assess its degree of conversion and extent of polymerization. The purpose of this in vitro study was to evaluate the effect of three curing distances (0, 2, and 4 mm) on the microhardness of the top and bottom surfaces of three types of flowable bulk-fill composite resins (smart dentin replacement, Opus bulk fill flow, and Tetric N). Material and method: Sixty-three specimens from the three types of composite resins (n=21) were fabricated using Teflon mold with a 4mm depth and a 5 mm internal diameter and cured for 20 seconds. For each material, three subgroups were fabricated according to the position of the light curing tip from the top surface; at 0, 2, and 4 mm distances. Microhardness was measured using the Vickers test with a 50-g load for 15 seconds for the top and bottom surfaces of all the samples. Results: The microhardness values were decreased in the following order; 0mm > 2mm > 4mm curing tip distance, for both sides and Tetric N had the highest microhardness values. Significant differences in microhardness were recorded between the top and bottom surfaces for all the specimens (p<0.05). Conclusion: Increasing the distances between the tip of the light cure and the surface of flowable bulk-fill resins can significantly decrease the microhardness of the bottom surfaces compared to the top surfaces.
In the present work effect of recycled heating and cooling on the values of concrete compressive strength due to high temperature of 4000C was studied.
The tests show that the percent of reduction in compressive strength of the samples which exposed to a temperature of 4000C for one cycle was 32.5%, while the reduction was 52.7% for the samples which were exposed to recycled heating and cooling of ten times .
Moreover a study of the effect of specimen sizes on the percentages of compressive strength reduction due to high temperature
... Show MoreIn this research, the electrical characteristics of glow discharge plasma were studied. Glow discharge plasma generated in a home-made DC magnetron sputtering system, and a DC-power supply of high voltage as input to the discharge electrodes were both utilized. The distance between two electrodes is 4cm. The gas used to produce plasma is argon gas which flows inside the chamber at a rate of 40 sccm. The influence of work function for different target materials (gold, copper, and silver), - 5cm in diameter and around 1mm thickness - different working pressures, and different applied voltages on electrical characteristics (discharge current, discharge potential, and Paschen’s curve) were studied. The results showed that the discharge cur
... Show MoreIn the present study, the growth and total lipid contents of two oleaginous fungal isolates Aspergillus terreus, Aspergillus fumigatus were compared in different nitrogen and organic carbon sources. Artificially the fungi were cultured on media consisting of various mono- or di- or polysaccharides and peptone or yeast extract as elementary sources for carbon and nitrogen, respectively. Media containing sucrose /yeast extract or glucose/ yeast extract were the most effective for lipid production from fungal, during two weeks incubation period, the highest biomass of dry weight was (19.6 , 18.8) g / L , (25.8 , 30.5) g /L and lipid yield (1, 0.97 )g/L, (0.65, 0.65) g/ L for two isolates Aspergillus terreus
... Show MoreThe influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increases films thickness was fond to increase the electrical cAnductivity whereas the activation energy (Ea) would vary with films thickness. Hall Effect analysis resu
... Show MoreThe influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increase films thickness was fond to increase the electrical conductivity whereas the activation energy (Ea) would vary with f
... Show MoreThe importance of the current study lies in the importance of the Tax policy that being considered one of the most important tools working on fulfilling the social, financial and economic goals and improving the investment environment in the country to become having the ability to activate the national economy. The current study has referred that ( Has the tax planning practiced by the Iraqi contribution companies led to increase the far-term tax outcome through getting benefit of the monetary funds and expansion in&nbs
... Show MoreIn this research, hand lay- up technique is used to prepare samples from epoxy resin reinforced with multi- walled carbon nanotubes in different weight fractions (0, 2, 3, 4, 5) wt%. The immersion effect by sodium hydroxide solution (NaOH) at normality (0.3N) for a period of (15 days) on the thermal conductivity of nanocomposites was studied, and compared to natural condition (before immersion). The thermal conductivity of epoxy nanocomposites specimens were carried out using Lee’s disk method. The experimental results showed that thermal conductivity increased with increase weight fraction before and after immersion for all specimens, while the immersion effect leads to decrease thermal conductive values compared to thermal conductivi
... Show MoreThe current study aimed at identifying the impact of each of the full and part time summer enrichment programs on the performance of gifted students. Moreover, it aimed to study the difference between the full and part time programs on the performance of gifted students. The study sample consisted of (115) students from the full time programs and (137) students from the part time programs, they have been randomly selected from the gifted students participating in the full and part time summer enrichment programs. The researcher used the scale of student performance. The results indicated that there were statistically significant differences between the averages of the pre and post applications of the
... Show MoreNiO0.99Cu0.01 films have been deposited using thermal evaporation
technique on glass substrates under vacuum 10-5mbar. The thickness
of the films was 220nm. The as -deposited films were annealed to
different annealing temperatures (373, 423, and 473) K under
vacuum 10-3mbar for 1 h. The structural properties of the films were
examined using X-ray diffraction (XRD). The results show that no
clear diffraction peaks in the range 2θ= (20-50)o for the as deposited
films. On the other hand, by annealing the films to 423K in vacuum
for 1 h, a weak reflection peak attributable to cubic NiO was
detected. On heating the films at 473K for 1 h, this peak was
observed to be stronger. The most intense peak is at 2θ = 37