Background: The finite element method (FEM) is expected to be one of the most effective computational tools for measuring the stress on implant-supported restorations. This study was designed using the 3D-FEM to evaluate the effect of two adhesive luting types of cement on the occlusal stress and deformation of a hybrid crown cemented to a mono-implant. Materials and Method: The mono-screw STL file was imported into the CAD/CAM system library from a database supported by De-Tech Implant Technology. This was to assist in the accurate reproduction of details and design of a simulated implant abutment. Virtually, a digital crown was designed to be cemented on an abutment screw. A minimum occlusal thickness of 1mm and marginal fitting of 1.2mm was intended. An 80µm cement interface thickness for this study’s purposes was applied using U-Cem Premium and 3M RelyXTm adhesives. The FEA software meshed into tetrahedral elements. Two three-dimensional finite element models were simulated under different loads of 200N, 400N, 600N, 800N, 1000N, 1200N, and 1400N. Results: The results showed that the hybrid ceramic crown attached to a mono-implant with each adhesive cement exhibited comparable stress and strain. However, the amount of distortion was less when RelyX cement was used. Conclusion: Overall, it was advisable to use 3M RelyXTm adhesive cement up to 1400N load.
This paper concerns with deriving and estimating the reliability of the multicomponent system in stress-strength model R(s,k), when the stress and strength are identical independent distribution (iid), follows two parameters Exponentiated Pareto Distribution(EPD) with the unknown shape and known scale parameters. Shrinkage estimation method including Maximum likelihood estimator (MLE), has been considered. Comparisons among the proposed estimators were made depending on simulation based on mean squared error (MSE) criteria.