Background: Eucalyptus extracts and derivatives are natural substances with potent antimicrobial properties. This study investigated the in- vitro effects of non-nutritive sweeteners on the antifungal activity of alcoholic and aqueous Eucalyptus extracts against Candida albicans, a common oral pathogen. Materials and Method: Ten isolates of Candida albicans were isolated from dental students’ salivary samples. The alcoholic and aqueous extracts were prepared from fresh Eucalyptus leaves using maceration. The sensitivity of Candida albicans isolates to various concentrations of Eucalyptus extracts ranging from 50 to 250 (mg/mL) was evaluated via agar well diffusion method, while the agar streaking method was used to assess the minimum fungicidal concentration (MFC). In addition, the effect of non-nutritive sweeteners on the MFC of the extracts was investigated. Results: The Eucalyptus extract-sensitive Candida albicans isolates showed an increase in inhibitory zone width with increasing extract concentration. Regarding their antifungal effectiveness, clear disparities were observed among extract concentrations. Against Candida albicans, the MFC for Eucalyptus alcoholic extract was 75 mg/mL, but the MFC for Eucalyptus aqueous extract was 200 mg/mL. Notably, 15% stevia and 5% sucralose did not affect the antifungal effects of the Eucalyptus alcoholic extract. The antifungal effectiveness of the aqueous Eucalyptus extract against Candida albicans was unaffected by stevia and sucralose concentrations of up to 1%. Conclusion: Significant antimicrobial action against Candida albicans is shown in Eucalyptus extracts. Results indicated that stevia and sucralose at specific quantities could be utilized as sweeteners for Eucalyptus extracts in an efficient manner without impairing the extracts’ antifungal activity.
No. Due to their apparently extreme optical to X-ray properties, Narrow Line Seyfert 1s (NLSy1s) have been considered a special class of active galactic nuclei (AGN). Here, we summarize observational results from different groups to conclude that none of the characteristics that are typically used to define the NLSy1s as a distinct group – from the, nowadays called, Broad Line Seyfert 1s (BLSy1s) – is unique, nor ubiquitous of these particular sources, but shared by the whole Type 1 AGN. Historically, the NLSy1s have been distinguished from the BLSy1s by the narrow width of the broad Hb emission line. The upper limit on the full width at half maximum of this line is 2000kms−1 for NLSy1s, while in BLSy1s it can be of several thousands
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreObjectives The strategies of tissue-engineering led to the development of living cell-based therapies to repair lost or damaged tissues, including periodontal ligament and to construct biohybrid implant. This work aimed to isolate human periodontal ligament stem cells (hPDLSCs) and implant them on fabricated polycaprolactone (PCL) for the regeneration of natural periodontal ligament (PDL) tissues. Methods hPDLSCs were harvested from extracted human premolars, cultured, and expanded to obtain PDL cells. A PDL-specific marker (periostin) was detected using an immunofluorescent assay. Electrospinning was applied to fabricate PCL at three concentrations (13%, 16%, and 20% weight/volume) in two forms, which were examined through field emission
... Show MoreRemoval of heavy metal ions such as, cadmium ion (Cd 2+) and lead ion (Pb 2+) from aqueous solution onto Eichhornia (water hyacinth) activated carbon (EAC) by physiochemical activation with potassium hydroxide (KOH) and carbon dioxide (CO2) as the activating agents were investigated. The Eichhornia activated carbon was characterized by Brunauer Emmett Teller (BET), Fourier Transform Infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) techniques. Whereas, the effect of adsorbent dosage, contact time of pH, and metal ion concentration on the adsorption process have been investigated using the batch process t
The present study aims to get experimentally a deeper understanding of the efficiency of carbon fiber-reinforced polymer (CFRP) sheets applied to improve the torsional behavior of L-shaped reinforced concrete spandrel beams in which their ledges were loaded in two stages under monotonic loading. An experimental program was conducted on spandrel beams considering different key parameters including the cross-sectional aspect ratio (
This paper presents the ability to use cheap adsorbent (corn leaf) for the removal of Malachite Green (MG) dye from its aqueous solution. A batch mode was used to study several factors, dye concentration (50-150) ppm, adsorbent dosage (0.5-2.5) g/L, contact time (1-4) day, pH (2-10), and temperature (30-60) The results indicated that the removal efficiency increases with the increase of adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature. An SEM device characterized the adsorbent corn leaves. The adsorption's resulting data were in agreement with Freundlich isotherm according to the regression analysis, and the kinetics data followed pseudo-first-or
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More