Background: Environmental tobacco smoking is produced by active smokers burning the tip of a cigarette and breathed by nonsmokers and measured by cotinine level. It has the potential to raise the risk of periodontal disease. One of the most frequent chronic diseases in adults is periodontal disease. The lower maternal-fetal attachment has been found to predict smoking status in previous studies, but no research has examined whether maternal-fetal attachment predicts environmental tobacco smoking. This study assessed the effects of maternal environmental tobacco smoke exposure on periodontal health and mother-infant bonding concerning salivary cotinine levels. Materials and methods: This is a comparative cross-sectional study comparing environmental tobacco smoke on exposed and non-exposed mothers aged between 20-35 years with their infants aged up to one year who attended primary health care centers in rural areas of AL-Karkh sector/Baghdad. Along with the essential socio-demographic data, a secondhand smoke exposure scale and postpartum bonding questionnaire were employed. Collection of unstimulated saliva from mothers was done according to Navazesh and Kumer in 2008. After that, the clinical Assessment of gingival bleeding and periodontal pockets was performed by using Community Periodontal Index according to the world health organization in 1997. Results: Out of 150 subjects,67(44.66%) were exposed to environmental tobacco whereas the non-exposed mothers were composed of 83 (55.33%). The highest mean number of CPI0(healthy gingiva) and CPI1(gingival bleeding) were among the non-exposed mothers while the highest mean number of CPI2(dental calculus), CPI3 (shallow pocket 4-5mm) and CPI4(deep pocket 6mm or more) were among the exposed mothers. The mean value of cotinine level among the non-exposed mothers was lower than exposed mothers with significant results. A higher salivary cotinine level was linked to a lower maternal-fetal bonding score. Conclusions: Mother’s exposure to environmental tobacco smoke significantly negatively impacts periodontal disease. Furthermore, mothers who have a stronger sense of attachment and affiliation to their fetus have lower salivary cotinine concentrations than mothers who have a less sense of fetal attachment.
هدفت الدراسة الحالية الى التعرف ما اذا كان هناك تقبل اجتماعي للتلاميذ بطيئي من قبل اقرانهم العاديين؟ وكذلك معرفة ما اذا كان هناك فروق ذات دلالة في التقبل الاجتماعي بين افراد عينة الدراسة على وفق المتغيرات الاتية:
أ- العمر (9-13)
ب- الجنس (ذكور –اناث)
ج- المرحلة الدراسية
د- الحالة الاقتصادية (جيدة –متوسطة –جيدة جدا)
ولغرض تحقيق اه
... Show MoreSolid waste generation and composition in Baghdad is typically affected by population growth, urbanization, improved economic conditions, changes in lifestyles and social and cultural habits.
A burning chamber was installed to burn cellulosic waste only. It was found that combustion reduced the original volume and weight of cellulosic waste by 97.4% and 85% respectively.
A batch composting study was performed to evaluate the feasibility of co-composting organic food waste with the cellulosic bottom ash in three different weight ratios (w/w) [95/5, 75/25, 50/50].
The composters were kept in controlled aerobic conditions for 7 days. Temperature, moisture, and pH were measured hourly as process succe
... Show MoreThe aim of this research is to adopt a close range photogrammetric approach to evaluate the pavement surface condition, and compare the results with visual measurements. This research is carried out on the road of Baghdad University campus in AL-Jaderiyiah for evaluating the scaling, surface texture for Portland cement concrete and rutting, surface texture for asphalt concrete pavement. Eighty five stereo images of pavement distresses were captured perpendicular to the surface using a DSLR camera. Photogrammetric process was carried out by using ERDAS IMAGINE V.8.4. The results were modeled by using a relationship between the photogrammetric and visual techniques and selected the highest coefficient of determinatio
... Show MoreWater scarcity is one of the most important problems facing humanity in various fields such as economics, industry, agriculture, and tourism. This may push people to use low-quality water like industrial-wastewater. The application of some chemical compounds to get rid of heavy metals such as cadmium is an environmentally harmful approach. It is well-known that heavy metals as cadmium may induce harmful problems when present in water and invade to soil, plants and food chain of a human being. In this case, man will be forced to use the low quality water in irrigation. Application of natural materials instead of chemicals to remove cadmium from polluted water is an environmental friendly approach. Attention was drawn in this research wor
... Show MoreA method has been demonstrated to synthesise effective zeolite membranes from existing crystals without a hydrothermal synthesis step.
Elzaki Transform Adomian decomposition technique (ETADM), which an elegant combine, has been employed in this work to solve non-linear Riccati matrix differential equations. Solutions are presented to demonstrate the relevance of the current approach. With the use of figures, the results of the proposed strategy are displayed and evaluated. It is demonstrated that the suggested approach is effective, dependable, and simple to apply to a range of related scientific and technical problems.
Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreThe Hopfield network is one of the easiest types, and its architecture is such that each neuron in the network connects to the other, thus called a fully connected neural network. In addition, this type is considered auto-associative memory, because the network returns the pattern immediately upon recognition, this network has many limitations, including memory capacity, discrepancy, orthogonally between patterns, weight symmetry, and local minimum. This paper proposes a new strategy for designing Hopfield based on XOR operation; A new strategy is proposed to solve these limitations by suggesting a new algorithm in the Hopfield network design, this strategy will increase the performance of Hopfield by modifying the architecture of t
... Show More